eCM (Eur Cell Mater / e Cells & Materials) Not-for-profit Open Access
Created by Scientists, for Scientists
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2018   Volume No 35 – pages 132-150

Title: Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture

Authors: IA Otto, R Levato, WR Webb, IM Khan, CC Breugem, J Malda

Address: Department of Orthopedics, University Medical Center, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands

E-mail:  j.malda at

Abstract: Paramount for the generation of auricular structures of clinically-relevant size is the acquisition of a large number of cells maintaining an elastic cartilage phenotype, which is the key in producing a tissue capable of withstanding forces subjected to the auricle. Current regenerative medicine strategies utilize chondrocytes from various locations or mesenchymal stromal cells (MSCs). However, the quality of neo-tissues resulting from these cell types is inadequate due to inefficient chondrogenic differentiation and endochondral ossification, respectively. Recently, a subpopulation of stem/progenitor cells has been identified within the auricular cartilage tissue, with similarities to MSCs in terms of proliferative capacity and cell surface biomarkers, but their potential for tissue engineering has not yet been explored. This study compared the in vitro cartilage-forming ability of equine auricular cartilage progenitor cells (AuCPCs), bone marrow-derived MSCs and auricular chondrocytes in gelatin methacryloyl (gelMA)-based hydrogels over a period of 56 d, by assessing their ability to undergo chondrogenic differentiation. Neocartilage formation was assessed through gene expression profiling, compression testing, biochemical composition and histology. Similar to MSCs and chondrocytes, AuCPCs displayed a marked ability to generate cartilaginous matrix, although, under the applied culture conditions, MSCs outperformed both cartilage-derived cell types in terms of matrix production and mechanical properties. AuCPCs demonstrated upregulated mRNA expression of elastin, low expression of collagen type X and similar levels of proteoglycan production and mechanical properties as compared to chondrocytes. These results underscored the AuCPCs’ tissue-specific differentiation potential, making them an interesting cell source for the next generation of elastic cartilage tissue-engineered constructs.

Key Words: Auricular cartilage, tissue engineering, cartilage progenitor cells, hydrogel, 3D culture.

Publication date: February 27th 2018

Article download: Pages 132-150 (PDF file)

Twitter Facebook Google LinkedIn Print