eCM (Eur Cell Mater / e Cells & Materials) Not-for-Profit Open Access
Created by Scientists, for Scientists
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2018   Volume No 37 – pages 265-276

Title: Antibiotic-eluting resorbable bone-void filler evaluated in a large animal infection prevention model

Authors: Z Ferrell, DW Grainger, KD Sinclair

Address: Elute, Inc., 417 Wakara Way, Salt Lake City, UT 84108, USA.

E-mail: sinclairkristof at gmail.com

Abstract: Periprosthetic infection in total knee arthroplasty is a difficult-to-treat complication. Current implant revision procedures use non-degradable, antibiotic-loaded bone cement for local antimicrobial delivery. As a permanent foreign body, antibiotic-loaded bone cement is susceptible to bacterial colonisation after antibiotic release. In this first step, of a multi-study approach, an infection prevention model assessed a resorbable, antibiotic-eluting bone-void filler for preventing infection in a large animal model. Four groups of sheep were utilised to monitor antibiotic-eluting bone-void filler-induced osteoconductivity, infection prevention, and implant resorption. Explanted bone and surrounding tissues were evaluated using quantitative microbiology, backscattered electron microscopy, bone mineral apposition, and Sanderson’s staining at the 12-week endpoint. Control groups received commercially available bone-void filler, implanted into a surgically created defect on the right medial femoral condyle. Experimental groups received six antibiotic-eluting bone-void filler devices placed into identically sized defects. One control and one experimental group tested osteoconductivity. An additional control and experimental group were each inoculated with 5 × 105 colony forming units/mL Staphylococcus aureus during implant placement for bactericidal effects. Osteoconductivity was confirmed for both antibiotic-eluting bone-void filler and commercially available bone-void filler. The experimental group inoculated with S. aureus showed no detectable bacteria at the study’s 12-week endpoint, while infection controls required euthanasia 6-11 d post-inoculation due to infection. This large animal study validated this antibiotic-eluting bone-void filler as osteoconductive, in situ degradable, and bactericidal. All groups, except the infection control, exhibited bone formation comparable to commercial filler ProOsteon®500R.


Key Words: Animal model, periprosthetic infection, controlled antimicrobial release, bone void filler, tobramycin.


Publication date: April 8th 2019

Article download: Pages 265-276 (PDF file)
DOI:
10.22203/eCM.v037a16

 

Twitter Facebook Google LinkedIn Print