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Abstract

Cryo-electron microscopy provides the means to
quantitatively study macromolecules in their native state.
However, the original mass distribution of the macromolecule
is distorted by the contrast transfer function (CTF) of the
electron microscope.  In addition, the zeros of the CTF put
a practical limit on the resolution that can be achieved.
Substantial improvement to the quality of the results can be
accomplished by collecting the data using a series of defocus
settings.  Such data sets can be combined and the resolution
can be extended beyond the first zero of the CTF.  This
procedure can be applied either at the stage of raw data, or
more effectively at the stage of reconstructed volumes
which have a high signal-to-noise ratio as a result of
averaging over many projections.  A method of three-
dimensional (3D) reconstruction that combines an algebraic,
iterative 3D reconstruction technique with CTF correction
is proposed.  The potential to incorporate a priori knowledge
into the reconstruction process is discussed.  This approach
was used to obtain a 3D reconstruction of the E. coli 70S
ribosome from energy filtered cryo-images.
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Introduction

Single particle reconstruction methods [21] make it
possible to obtain three-dimensional density maps of
macromolecular complexes that are not amenable to
crystallization.  When combined with cryo techniques [8,
16, 28, 32] and recent advances in image processing methods
[17, 18], these methods yield structural maps that can be
quantitatively interpreted [9].  Even though substantial
improvement in the resolution of three-dimensional results
has been achieved, further progress is hampered by the
image/contrast distortions introduced by the electron
microscope (EM).  These effects can be described within a
linear, weak-phase approximation by the contrast transfer
function (CTF) of the microscope.  Additional distortions
are caused by the inelastically scattered electrons which
contribute a high and slowly varying background to the
image.  Moreover, if  multiple scattering events occur, the
inelastically scattered electrons can give rise to elastic bright
field images, acting as “internal sources”, and the image we
observe can be thought of as a superposition of a large
number of bright field images, each originating from an
inelastically scattered electron having different angular
incidence and energy [22].  The conventional linear contrast
transfer function cannot account for these inelastic and
multiple scattering effects.  However, zero-loss energy
filtering in the EM eliminates virtually all inelastically
scattered electrons and thus reduces non-linear effects to a
minimum.  In ice, elastic scattering from nucleic acids is
predicted to be more than twice as strong as from protein,
whereas the amount of inelastic scattering is similar for the
two types of molecules. Thus, energy filtration should also
greatly increase the contrast between RNA and protein [26],
a desired effect in the study of the protein-nucleic acid
complexes such as the ribosome.   Finally, by combining
energy-filtered cryo-EM with CTF correction one can, in
principle, obtain absolute densities of  biological molecules
that agree very well with those from X-ray structures [14,
25].

Linear Theory of the Contrast Transfer Function

The contrast transfer theory was formulated in the
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seventies [4, 7, 11, 12, 15].  It can be demonstrated [29] that
under the weak-phase approximation the relationship
between the object and the bright field image can be
described by the linear transfer theory.  In Fourier space,

I(k) = H(k)Φ(k)

where Φ(k) is the Fourier transform of the object (linearly
related to the Coulomb potential distribution),  I(k) is the
Fourier transform of the observed image, k is a vector in
Fourier space related to the scattering angle  θ by k=θ/λ (λ
is the wavelength of the electrons), k =  k , and H(k) is the
CTF and has the explicit form

H(k) = sin γ(k) - W cosγ(k)

The term W (here assumed to be constant in the spatial
frequency range considered) is called amplitude contrast
ratio, and γ(k) is the phase shift produced by the lens
aberrations and defocusing.  γ(k) is rotationally symmetric
assuming that the astigmatism is negligible.  In that case
our CTF H(k) is rotationally symmetric as well.  The contrast
transfer functions for our choice of defocus values are
shown in Figure 1.  Since the amplitude contrast is different
for different atomic species, Equation 2 is strictly correct
only for a single species of atoms [6, 10].  The use of single
value for W implies that W will be to some extent specimen-
dependent.

The presence of additional effects in the image
formation process requires expansion of the CTF model
given by Equation 2.  These effects include: finite source
size [7], energy spread [12, 30], resolution-limiting effects of
the film [3], scanner [14], and drift [5, 13].  All these effects
have a frequency-limiting impact on the EM image which
can be approximately described by so called envelope
functions.  To demonstrate the effect of envelope functions,
the same CTFs of Figure 1 are again shown for the
conditions of our experiment (Fig. 2; for details see the section
on Application to Energy-Filtered Images).

Methods of Correction for the CTF

The goal of the CTF correction (for a review of some
of the earlier literature, see [27]) is to recover the original
values of the amplitudes of the Fourier transform of the
image, within the framework of the linear approximation.

According to Equation 1, Fourier transform of the
observed image is the product of the  CTF and the Fourier
transform of the object.  Thus, it is tempting to divide the
Fourier transform by the CTF (estimated or known) to recover
the exact values of the object:

Φ(k) ≅  I(k) / H(k)

Unfortunately, this simple solution rarely yields desired
results.  In practice, the measured image is corrupted by
noise, which will be enhanced upon division by the CTF in
regions where the CTF is small.  The CTF of the EM is low
in the low-spatial frequency region, but also tends to zero
at high spatial frequencies.  Most problematic are zero
crossings in the range between these extremes where
division is impossible.  Thus, a better approach is to take
advantage of the fact that in most practical cases the noise
is not correlated with the original image.  Using this
assumption one would seek a filter function F(k) that
minimizes the expected mean squared deviation of the
restored object (k) = F(k)I(k) from the original object [19]:

E[ | Φ(k) - F(k)I(k)|2]

Figure 1. Theoretical contrast transfer function (eqn. 2) for
three defocus values: 1.5 µm (_____), 2.0 µm (----), and 2.5
µm (-⋅-⋅-).

Figure 2. Theoretical contrast transfer function with
envelope functions effects for three defocus values: 1.5 µm
(_____), 2.0 µm (----), and 2.5 µm (-⋅-⋅-).
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where E[.] denotes the expectation over an ensemble of
images.  The solution to this problem is given by so-called
Wiener filter [24]:

SNRkH
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Here SNR denotes the signal-to-noise ratio of original image
and the noise (in the general case it can be frequency
dependent and given by the ratio of the respective power
spectra).  In the noiseless case (SNR → ∞) the Wiener filter
approximates the pseudo-inverse filter [1] defined by:
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Thus, it also approximates the simple inversion, as
given by Equation 3.  For the other extreme case, namely
SNR → 0, the application of the Wiener filter will
approximately correspond to the multiplication by the CTF.
In intermediate cases, depending on the value of the SNR
used, the Wiener filter will in general amplify frequencies in
those regions where CTF has moderate to large values and
suppress frequencies in regions where the CTF has small
values.  In addition, as follows from Equation 5, wherever
the CTF has zero value the filtered image will have its Fourier
amplitude set to zero.  Thus, the Wiener filtration does not
make any attempts to recover the information in the missing
frequency regions, a property that limits its appeal as a tool
for the CTF correction for EM data.  Moreover, the Wiener
filters are often criticized for excessive suppression of the
measurement noise, while performing only minor corrections
[2].

The iterative methods for the CTF corrections [2]

attempt to find an approximation (x) of an original image
such that the squared residual error is minimized over the
appropriate region of support:

|i(x) - h(x)* (x)|2 → min

Equation 7 is given in real space and * denotes convolu-
tion.  The solution is found in a recursive manner starting

from the initial approximation (0)(x) (usually a blank image).
The advantage of the iterative methods is that additional
constraints can be incorporated into the process, either
linear, in form of regularization, or non-linear, for example, as
a positivity constraint.  In some cases these additional
constraints, often referred to as a priori knowledge of the
image, can help to recover information suppressed by the

zeros of the CTF.
The presence of zeros in the CTF of the electron

microscope and the dependence of the locations of these
zeros on the defocus value suggest that the CTF correction
can be augmented by collecting a defocus series data set.
Such data, if combined in Fourier space, should for all the
practical purposes cover the whole range of frequencies.
Assuming that L defocus values ∆z

l
 have been used, both

the Wiener filter method and iterative methods can be used
to combine the data sets and correct for the CTF effects.
The Wiener filter for the l’th data set has the form [10]:

1/SNR + (k)H

(k)H = (k)F
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and the Fourier transform of the CTF corrected object is
given by

)k(I(k)F = )k
~
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As in the case of a single defocus data set (Eqn. 5), the
spatial frequency regions corresponding to the zeros of the
CTFs are set to zero in the respective data sets.  Thus, it
becomes evident that the knowledge about the precise
settings of the defocus during data collection is essential
for this method to succeed.

The iterative method can be easily extended to the
defocus case series by having Equation 7 modified to

min|~|  (x) * (x)h-i(x)w ll
2

l

L

=1l

→φ∑

where w
l
 > 0 defines the relative importance of the l’th

defocus data set.  As in the case of a single defocus data
set (Eqn. 7) the solution is found  in a recursive manner

starting from the appropriate approximations 
l
(0)(x) and the

a priori knowledge about the original image can be easily
incorporated.

In the field of electron microscopy the data are
available in the form of projections of the biological
macromolecule.  Thus, in principle, the CTF correction
should be applied directly to the 2D data (i.e., original
micrographs).  Unfortunately, due to the very low signal-to-
noise ratio in cryo-EM images this method is not likely to
succeed.  Instead, the CTF correction has been applied after
all the orientation parameters were found and a 3D
reconstruction could be calculated.  At this point, due to
the heavy oversampling in Fourier space, the structure has
much higher SNR, and errors in individual projections are
less likely to dominate the result.  Since our measured data
are 2D projections of the structure, the best solution is to
make CTF correction an integral part of the 3D
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reconstruction procedure.  In this way the final volume is
obtained in one single step and any accumulation of errors
is avoided.

To design the method of three-dimensional recon-
struction with CTF compensation from defocus series, we
have to modify Equation 10.  Both 3D reconstruction and
CTF application can be treated as algebraic problems.  In
real space, the effect of the CTF can be described by a point
spread function, represented by a square matrix, and the
projection operation by a non-square matrix P.  Moreover,
since the CTF function was assumed to be rotationally
symmetric, it can be applied to the 3D object instead of 2D
projections.  Thus, denoting the unknown, CTF artifacts-
free object by g and using matrix notation, we obtain from
equation 10

min|||ˆ| 2   Bga + gH P-dwa)-(1 2
llll

L

=1l

→∑

where d is a vector containing all the available 2D
projections, matrix B is a discrete approximation of the
Laplacian and a is a Langrange multiplier.  The value of a
determines the relative smoothness of the solution g.  This
additional term will regularize the solution [20] and prevent
adverse amplification of noise.  The solution of Equation 11
is found using the steepest descent method [20]:
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The first sum can be pre-calculated and stored as a 3D
volume in the computer memory.  Thus, the input projections
d

l
 have to be read only once and are never again accessed

during the course of the iterations.  In addition, the product
BTB is the Laplacian of the 3D volume g(n), which can be
calculated more efficiently without actually creating the matrix
BTB.  The point spread function is space-invariant, so H

l

has a block-Toeplitz structure [2], and H
l
 is equal to H

l
T.

Because of the large size of the matrix it is more convenient
to use the CTF H

l
 in Fourier space and to modify the Fourier

transform of the volume instead of using matrix multipli-
cation or real space convolution.

Application to Energy-Filtered Images
 of the 70S E. coli Ribosome

The specimen was prepared following the procedure
of Wagenknecht et al. [31].  Molybdenum 400-mesh grids
were used to minimize thermal effects.  The specimens were
examined in a Zeiss/LEO EM912 (Oberkochen, Germany)
transmission electron microscope operated at 120 kV.  The

microscope is equipped with a Köhler illumination system
and an Omega energy filter.  All the microscopy was done at
a temperature below -170°C using an  Oxford cryo-holder
CT3500 (Oxford Instruments, Oxford, UK) and temperature
controlling unit.  A 90 µm object aperture was used in all
experiments.  Three images were taken at zero degree tilt of
the same specimen area using the defocus settings 1.5 µm,
2.0 µm and 2.5 µm at a magnification of 52000x, which was
calibrated using catalase crystals. The dose for each
exposure was 5e-/Å2, thus the total dose accumulation
reached 15e-/Å2 for the data collected at 2.5 µm defocus.
The width of the zero-loss energy filter was 14 eV.  Images
were recorded on Kodak (Rochester, NY) SO163 films and
processed in the developer D19 at full strength for 12
minutes. The negatives were scanned using the Perkin Elmer
(Norwalk, CT) flatbed PDS 1010A microdensitometer with a
step size of 20 µm.  The corresponding pixel size on the
specimen is 3.8Å.

The parameters of the CTFs (defocus, source size,
energy spread, amplitude contrast ratio) were determined
using the method described by Zhu et al. [33].  Briefly, the
power spectrum of a large field is computed and rotationally
averaged.  The resulting profile is background corrected
and fitted on the basis of CTF theory and analytical
expressions for the envelope terms.  The amplitude contrast
ratio was determined as 0.14.  After windowing the particles
were subjected to the 3D projection alignment procedure
[18] with an angle increment of 2°.  A previous reconstruction
of the 70S ribosome [18] was used as initial reference for a
2.5 µm-defocus group (2254 images).  The resulting recon-
struction was used as a reference for a 2.0 µm-defocus group
(2043 images) and the result was used as a reference for a
1.5 µm-defocus group (1539 images) (Figs. 3a and 3b).
Finally, after all the necessary parameters were established,
images from all three groups were used in a 3D
reconstruction with the CTF compensation program (Figs.
3c and 3d), as described in the section on “Methods of
Correction for the CTF”.  To test the influence of the non-
linear constraints on the 3D reconstruction process we
decided to use the most intuitive one, namely a positivity
constraint.  Since the CTF-corrected volume should be
linearly related to the Coulomb potential distribution within
the object it is reasonable to assume that the density values
should be positive.  The 3D reconstruction calculated by
enforcing positivity of the volume is shown in Figures 3e
and 3f.

The gain in resolution after the CTF correction and
merging of three defocus groups is easy to notice on the
surface representations (Fig. 3d versus Fig. 3b), but is
particularly striking in the appearance of the central slice
(Fig. 3c versus Fig. 3a).  The number of high-frequency
internal details increases dramatically and broad maxima
have become better localized.  The addition of the positivity

(11)
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constraint to the 3D reconstruction and CTF correction
process does not change the surface representation in any
significant way (Fig. 3f versus Fig. 3d).  The main difference
can be noticed in the central slice (Fig. 3e) where the artifacts
surrounding the structure are all but eliminated.

The analysis of resolution was done using Fourier
Shell Correlation (FSC) curves (FSC is a 3D version of Fourier
Ring Correlation measure [23]).  For each 3D reconstruction

all the input projections were divided randomly into two
equal subsets, for each subset a 3D reconstruction was
calculated and these two volumes were compared in Fourier
space using FSC curves (Fig. 4).  The curve for 1.5 µm-
defocus data set has a first minimum at approximately 1/25
Å-1, which is the position of the first zero of the
corresponding CTF (Fig. 2).  The curve for CTF-corrected
reconstruction using three data sets with defocus settings

Figure 3. 3D reconstruction of the 70S E. coli ribosome. (a) Central slice of the 1.5 µm data set reconstruction. (b) Surface
representations of the 1.5 µm data set reconstruction. (c) Central slice of the CTF-corrected reconstruction using three data
sets with defocus settings 1.5 µm, 2.0 µm and 2.5 µm, respectively. (d) Surface representations of the CTF-corrected
reconstruction using three data sets with defocus settings 1.5 µm, 2.0 µm and 2.5 µm, respectively. (e) Central slice of the CTF-
corrected reconstruction using the positivity constraint and three data sets with defocus settings 1.5 µm, 2.0 µm and 2.5 µm,
respectively. (f) Surface representations of the CTF-corrected reconstruction using three data sets with defocus settings 1.5
µm, 2.0 µm and 2.5 µm, respectively. Scale bars = 100 Å.
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1.5 µm, 2.0 µm and 2.5 µm has a minimum at lower frequency
and then rises at 1/25 Å-1, which proves that the gap in
frequency range caused by the zero of the CTF was
successfully filled by the information originating from two
other data sets.  The FSC curve for the CTF-corrected
reconstruction decreases quickly at about 1/19 Å-1.  In this
region CTFs for both 2.0 µm and 2.5 µm data sets intersect
zero.  The CTF for 1.5 µm data set has a maximum in this
region, but as it is clear from its FSC curve that SNR is
insufficient to provide significant contributions to the
merged reconstruction.  Thus, due to the particular choice
of defocus values there was no phase information recovered
past the spatial frequency of 1/20 Å-1.  The addition of the
positivity constraint modified the FSC significantly.  In the
whole frequency range considered the FSC has higher
values and extends to almost 1/15 Å-1.  Nevertheless, the
visual analysis of the corresponding structures and, most
significantly, the central slices (Figs. 3c and 3e) leads to the
conclusion that the gain in resolution is mostly due to the
elimination of artifacts in the background, not due to the
increase in details of the structure.

The influence of CTF correction on the reconstruct-
ed structures is best illustrated on the histogram of density
(Fig. 5).  The 70S ribosome should have two main density
components, namely protein and RNA.  In addition, the ice
surrounding the structure and filling its cavities and tunnels
should have a major contribution.  This can be noticed on
the corresponding histograms: both 1.5 µm defocus data
set and CTF-corrected volume have large maximum in their
histogram of mass around the zero value (in the course of
the 3D reconstruction process the density of ice was
arbitrarily set to zero).  The main difference is the position
of the second maximum, which in the case of the 1.5 µm
reconstruction is hardly separated from the “ice maximum”,
while after CTF correction the gap between the two maxima
becomes wider.  The histogram of density of the third
reconstruction has a shape similar that of the CTF-corrected:
two maxima are separated, but the negative values are
eliminated.

 Conclusions

The application of the 3D reconstruction with CTF
compensation procedure to the energy filtered EM images
of 70S E. coli ribosome proves that this strategy leads to
the significant increase in the resolution (as measured by
FSC curves).  Due to the availability of the reference volume
and application of the 3D projection alignment procedure
the results could be obtained in a relatively short time.  The
FSC curves agree with the resolution limits set by the
parameters of CTFs, as estimated from the micrographs using
a newly designed retrieval procedure.  The particular choice
of the defocus settings in the collected defocus series (1.5

µm, 2.0 µm and 2.5 µm) proved to be the most important
factor in the limiting the resolution of the merged, CTF-
corrected reconstruction.  Further experiments with other
choices of defocus settings are necessary to establish the
practical limit to the resolution that can be obtained using
energy filtered EM data.
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Figure 4. Resolution estimations using Fourier Shell
Correlation curves for 1.5 µm (_______), CTF-corrected
(-----), and CTF-corrected with positivity constraints (-⋅-⋅-)
3D reconstruction of the 70S E. coli ribosome.

Figure 5. Histogram of mass distribution for 1.5 µm
(_______), CTF-corrected (-----), and CTF-corrected with
positivity constraints (-⋅-⋅-) 3D reconstruction of the 70S E.
coli ribosome.



3-D reconstruction with contrast transfer compensation

153

References

1. Andrews HC, Hunt BR (1977) Digital Image
Restoration. Prentice-Hall, Englewood Cliffs, NJ.

2. Biemond J, Lagendijk RL, Mersereau RM (1990)
Iterative methods for image deblurring. Proc IEEE 78: 856-
883.

3. Downing KH, Grano DA (1982) Analysis of
photographic emulsions for electron microscopy of two-
dimensional crystalline specimen. Ultramicroscopy 7: 381-
404.

4. Erickson HP, Klug A (1970) The Fourier transform
of an electron micrograph: effects of defocusing and
aberrations, and implications for the use of underfocus
contrast enhancement. Ber Bunsenges Phys Chem 74: 1129-
1137.

5. Frank J (1969) Nachweis von Objektbewegungen
im lichtoptischen Diffraktogramm von elektronenmikro-
skopischen Aufnahmen (Demonstration of movement of
objects in the light optical diffractogram of electron
microscopic images). Optik 30: 171-180.

6. Frank J (1972) A study on heavy/light atom
discrimination in bright field electron microscopy using the
computer. Biophys J 12: 484-511.

7. Frank J (1973) The envelope of electron micro-
scopic transfer functions for partially coherent illumination.
Optik 38: 519-536.

8. Frank J, Penczek P, Grassucci R, Srivastava S (1991)
Three-dimensional reconstruction of the 70S Escherichia
coli ribosome in ice - the distribution of ribosomal RNA. J
Cell Biol 115: 597-605.

9. Frank J, Zhu J, Penczek P, Li Y, Srivastava S,
Verschoor A, Grassucci R, Lata RK, Agrawal RK (1995) A
model of protein synthesis based on cryo-electron
microscopy of the E. coli ribosome. Nature 376: 441-444.

10. Frank J, Penczek P (1995) On the correction of the
contrast function in biological electron microscopy. Optik
98: 125-129.

11. Hanszen KH, Trepte L (1971) The contrast transfer
function of the electron microscope with partial coherent
illumination. Part A: the ring condensor. Optik 33: 166-181.

12. Hanszen KH, Trepte L (1971) The contrast transfer
function of the electron microscope with partial coherent
illumination. Part B: disk shape source. Optik 33: 182-198.

13. Henderson R, Glaeser RM (1985) Quantitative
analysis of image contrast in electron micrographs of beam-
sensitive crystals. Ultramicroscopy 16: 139-150.

14. Langmore JP, Smith MF (1992) Quantitative
energy-filtered electron microscopy of biological molecules
in ice. Ultramicroscopy 46: 349-373.

15. Lenz F (1971) Transfer of image information in
the electron microscope. In: Electron Microscopy in Material
Science. Valdrè U (ed). Academic Press, New York. pp 540-

568.
16. Lepault J, Booy FP, Dubochet J (1983) Electron

microscopy of frozen biological suspensions. J Microsc 129:
89-102.

17. Penczek P, Radermacher M, Frank J (1992) Three-
dimensional reconstruction of single particles embedded in
ice. Ultramicroscopy 40: 33-53.

18. Penczek PA, Grassucci RA, Frank J (1994) The
ribosome at improved resolution: new techniques for
merging and orientation refinement in 3D cryo-electron
microscopy of biological particles. Ultramicroscopy 53: 251-
270.

19. Pratt WK (1991) Digital Image Processing. John
Wiley & Sons, Inc., New York.

20. Press WH, Teukolsky SA, Vetterling WT,
Flannery BP (1992) Numerical Recipes. Cambridge University
Press, Cambridge.

21. Radermacher M, Wagenknecht T, Verschoor A,
Frank J (1987) Three-dimensional reconstruction from a
single-exposure, random conical tilt series applied to the
50S ribosomal subunit of Escherichia coli.  J Microsc 146:
113-136.

22. Reimer L, Ross-Messemer M (1990) Contrast in
the electron spectroscopic imaging mode of a TEM.  J
Microsc 159: 143-160.

23. Saxton WO, Baumeister W (1982) The correla-
tion averaging of a regularly arranged bacterial envelope
protein. J Microsc 127: 127-138.

24. Schiske P (1973) Image processing using
additional statistical information about the object. In: Image
Processing and Computer-Aided Design in Electron Optics.
Hawkes PW (ed). Academic Press, London. pp 82-90.

25. Schröder RR, Manstein DJ, Jahn W, Holden H,
Rayment I, Holmes KC, Spudich JA (1993) Three-dimensional
atomic model of F-actin decorated with Dictyostelium
myosin S1. Nature 364: 171-174.

26. Smith MF, Langmore JP (1992) Quantitation of
molecular densities by cryo-electron microscopy.
Determination of the radial density distribution of tobacco
mosaic virus. J Mol Biol 226: 763-774.

27. Typke D, Hegerl R, Kleinz J (1992) Image
restoration for biological objects using external TEM control
and electronic image recording. Ultramicroscopy 46: 157-
173.

28. van Heel M (1987) Angular reconstitution: a
posteriori assignment of projection directions for 3D
reconstruction. Ultramicroscopy 21: 111-124.

29. Wade RH (1992) A brief look at imaging and
contrast transfer. Ultramicroscopy 46: 145-156.

30. Wade RH, Frank J (1977) Electron microscope
transfer functions for partially coherent axial illumination
and chromatic defocus spread. Optik 49: 81-92.

31. Wagenknecht T, Grassucci R, Frank J (1988)



154

P.A. Penczek et al.

Electron microscopy and computer image averaging of ice-
embedded large ribosomal subunits from Escherichia coli.
J Mol Biol 199: 137-147.

32. Wagenknecht T (1992) Three-dimensional
reconstruction of noncrystalline macromolecular assemblies.
In: Electron Tomography. Frank J (ed). Plenum, New York.
pp. 359-389.

33. Zhu J, Penczek PA, Schröder RR, Frank J (1997)
Three-dimensional reconstruction with CTF correction of
the 70S Escherichia coli ribosome using energy-filtered
cryo-electron microscopy. J Struct Biol 118: 197-219.


