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Stem cell technology has a rich history spanning sev-
eral decades and has evolved significantly since its incep-
tion in the mid-20th century. A pivotal moment occurred in
2006 when Shinya Yamanaka’s laboratory at Kyoto Univer-
sity successfully developed induced pluripotent stem cells
(iPSCs), marking a paradigm shift in cell biology (Taka-
hashi and Yamanaka, 2006). This breakthrough specifically
addresses the ethical concerns associated with using embry-
onic stem cells (ESCs) (Moradi et al., 2019) and paves the
way for developing treatments for various diseases where
effective therapies are currently lacking. In 2018, Japan
launched its first clinical trial utilising iPSC-derived neu-
rons to treat Parkinson’s disease (PD). This initiative is
part of broader research efforts focused on neurodegener-
ative disorders, including Alzheimer’s disease (AD), amy-
otrophic lateral sclerosis (ALS), and Huntington’s disease
(HD) (Takahashi, 2020). Clinical trials involving iPSC-
based therapies are currently being conducted for various
diseases in countries such as Australia, China, and the USA.
However, none of these trials have received regulatory ap-
proval, mainly due to concerns regarding safety and effi-
cacy. Safety issues, particularly tumorigenicity, arise from
residual stemness and genetic abnormalities encountered
during iPSC generation. Additionally, the complex nature
of neurodegenerative diseases, themicroenvironmental fac-
tors that influence cell fate post-transplantation, and the
inherent variability in the purity of iPSC-derived neurons
presents significant challenges to treatment efficacy. These
obstacles underscore the need for further optimisation and
innovative strategies to enhance treatment outcomes.

Organoids represent a significant breakthrough in cell
biology, serving as three-dimensional (3D) organ mimetics
derived from stem cells grown in vitro. They open new av-
enues for research and therapeutic solutions. In 2008, Hans
Clevers’ laboratory developed intestinal organoids from
mouse intestinal stem cells (Sato et al., 2009). This was
followed by significant advancements in developing cere-
bral organoid cultures, which effectively mimic brain tissue
in vitro (Lancaster et al., 2013). Subsequent studies have
successfully generated organoid models for neurodegener-
ative diseases (Zhao et al., 2020; D’Sa et al., 2023). How-
ever, these models have common limitations, including a
lack of vascularisation, size constraints, and variability be-
tween batches. They cannot fully replicate the complexity
of the human brain due to missing crucial cell types, such as
immune cells, and their inability to reproduce the microen-
vironmental cues present in mature or diseased brain states.
The introduction of assembloids, which combine different
organoids and cell types, marks a significant advancement
in replicating the complex architecture and functionality
of native tissues. Nevertheless, this increased complexity
can lead to variability in outcomes, and the technical re-
quirements for culture and maintenance remain challeng-
ing. Regarding the rejuvenation phenomenon during re-
programming, current iPSC-derived brain organoid models
primarily reflect the early stages of human brain develop-
ment (Pitrez et al., 2024). As a result, they may not accu-
rately capture the pathophysiological characteristics of neu-
rodegenerative diseases, such as AD, in older individuals.
Despite these limitations, organoids and assembloids hold
promise for personalised medicine applications, including
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Fig. 1. Integrative technologies enhance the efficiency, safety, and reproducibility of stem cell research and cell reprogramming to
treat neurodegenerative diseases. Microfluidics enables precise control of the microenvironment. Three-dimensional (3D) bioprinting
facilitates the creation and manipulation of complex structures. Artificial intelligence (AI) and machine learning (ML) enable managing
and analysing large datasets and facilitate automated manufacturing processes. iNs, induced neurons; iPSC, induced pluripotent stem
cell.

diseases like cystic fibrosis and neurodegenerative condi-
tions.

Additionally, organoids can serve as transplantation
materials, offering an advanced alternative for cell therapy
by closely mimicking the structure and function of real or-
gans. This approach may reduce the risk of tumour for-
mation and enhance cell viability compared to traditional
therapies (Cao et al., 2023). Furthermore, organoid trans-
plantation can facilitate more accurate modelling of the hu-

man brain, improving our understanding of neurodegener-
ative disorders and increasing the likelihood of successful
drug development. However, ethical concerns arise regard-
ing the creation of chimeric entities that may possess con-
sciousness (Revah et al., 2022). Concurrently, advances in
stem cell technology have led to direct neuronal reprogram-
ming (dNR) techniques, representing a transformative ap-
proach in neuroscience. By modulating specific neural lin-
eage transcription factors, these methods enable the conver-
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sion of somatic cells, such as fibroblasts or astrocytes, into
induced neurons (iNs) (Harati et al., 2023). Unlike iPSCs,
iNs bypass a stem cell intermediate, reducing tumorigenesis
risk. Additionally, dNR can be performed in vivo, allowing
the conversion of local astrocytes or glial cells into func-
tional neurons within the brain (Zhou et al., 2020). This
technique can potentially restore neuronal function directly
at the site of injury or degeneration. Despite challenges re-
lated to dNR conversion efficiency and the functional ma-
turity of iNs for therapeutic applications, these cells exhibit
characteristics of the aged state, making them valuable for
modelling age-related neurodegenerative diseases (Sun et
al., 2024).

An interdisciplinary approach integrating advanced
technologies is essential for overcoming the challenges of
translating established knowledge in stem cells and cell re-
programming into effective treatments for neurodegenera-
tive diseases.

Microfluidic systems enable precise control over the
cellular microenvironment by regulating media flow dy-
namics, shear stress, and chemical gradients. This capa-
bility enhances reproducibility and facilitates the develop-
ment of conditions that mimic in vivo environments. For
instance, a microfluidic chamber device integrated with
a decellularised human brain extracellular matrix (ECM)
can create brain-like microenvironments. Coupled with the
brain-specific biochemical and mechanical cues from the
ECM, the gravity-driven flow system optimises conditions,
significantly promoting the structural and functional matu-
ration of human brain organoids (Cho et al., 2021). More-
over, the simultaneous culture of multiple cell types within
a microfluidic system enhances the study of their interac-
tions and better simulate in vivo microenvironments. This
is particularly beneficial in drug development, as demon-
strated by a microfluidic co-culture systemmimicking ALS
disease through the interaction of neurons and muscle cells
(Stoklund Dittlau et al., 2021). Additionally, microfluidic
systems can be integrated into manufacturing processes, as
evidenced by the controlled fusion of brain organoids into
assembloids, meeting requirements for uniformity and scal-
ability (Zhu et al., 2023).

3D bioprinting offers precise control over the spa-
tial arrangement of cells and biomaterials. Tailoring the
composition and architecture of printed constructs enhances
their functionality and reproducibility across various man-
ufacturing processes. A notable example is the Orthog-
onally Induced Differentiation (OID) method, which has
successfully generated vascularised and patterned cortical
organoids. This approach employs 3D bioprinting with
differentiation-programmed stem cells to establish specific
neural regions spatially, improving the reproducibility of
complexmulticellular tissue-like structures (Skylar-Scott et
al., 2022). The potential of 3D bioprinting is further ex-
plored in efforts to replicate the intricate and functional
complexity of the brain, focusing on the spatial printing

of cells and organoids to construct functionally active and
structurally analogous brain-like tissues (Roth et al., 2023;
Yan et al., 2024).

Artificial intelligence (AI) andmachine learning (ML)
technologies, while still in their early stages, show sig-
nificant promise in managing large, complex biological
datasets such as multi-omics and high-content imaging
data. For example, applying machine learning to immunos-
taining images of neurons derived from patient-specific iP-
SCs could help predict mechanistic subtypes of PD (D’Sa
et al., 2023). These advancements promote personalised
and precisionmedicine by enablingmore accurate and rapid
treatment adjustments based on individual disease mecha-
nisms. AI and ML enhance the efficiency and effective-
ness of drug discovery, particularly throughAI-driven high-
throughput screening (HTS) processes. A notable example
is the development of a deep learning-based neural organoid
platform, which effectively addresses the challenges of
HTS and the complexity of high-dimensional organoid im-
age data, demonstrating its potential for drug screening in
HD models (Metzger et al., 2022). Furthermore, AI and
ML integration for cellular characterisation during manu-
facturing has been demonstrated in various studies, such as
identifying and selecting human iPSC colonies for clonal
expansion through image analysis combined with robotic
systems (Powell et al., 2023). These automated manufac-
turing systems improve reproducibility and reduce safety
risks associated with manual processes.

The application of stem cell and cell reprogramming
technologies has transformed our understanding of cell fate
mechanisms and opened new avenues for treating neu-
rodegenerative diseases. However, several challenges re-
main in translating these scientific advances into effective
clinical applications. Integrating advanced technologies—
such as biotechnology, microfluidics, 3D bioprinting, and
AI/ML—present multiple potential solutions to address
these challenges, including safety, reproducibility, and ef-
ficiency (Fig. 1).
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