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Abstract

As dental implant technology becomes increasingly widespread, peri-implantitis induced bone resorption and implant loss have garnered
significant academic attention. Current clinical treatments for peri-implantitis primarily focus on plaque control, but the limitations of
traditional therapies often hinder effective outcomes. Treatment strategies targeting immune responses that can eliminate inflammation,
control osteolytic environments, and restore physiological bone formation are promising approaches. This article comprehensively re-
views the role of the immune system in the pathogenesis and progression of peri-implantitis through a synthesis of multiple literature
sources. It introduces current immunomodulatory strategies in the treatment of peri-implantitis and discusses the potential applications
and challenges of novel immunotherapies, including gene therapy, cell engineering, and nanotechnology, in the management of peri-
implantitis. The aim is to provide guidance for translating immunotherapies from the laboratory to clinical practice.
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Introduction

In the comprehensive review conducted at the 2017
World Workshop which focused on the Classification of
Periodontal and Peri-Implant Diseases and Conditions, ex-
perts collectively agreed on the characterization of peri-
implantitis (PI). This condition is identified as a pathologi-
cal state impacting the tissues surrounding dental implants.
This is characterized by PI including inflammation and a
progressive degradation of the bone tissue supporting the
implant. This phenomenon is acknowledged as a major fac-
tor in the failure of dental implants [1]. The incidence of
PI is relatively high, and due to varying diagnostic criteria,
the reported prevalence of PI varies greatly in the litera-
ture. Krebs et al. [2] found that approximately 7.9 % of
implants and 13.2 % of patients experienced PI within the
period of 17 to 23 years following implantation, while an-
other study has reported rates of 21 % and 34 %. While
another study reported rates of 21 % and 34 % [3]. A
comprehensive meta-analysis conducted in 2022 indicated
that the incidence of PI is about 19 % [4]. These num-
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bers are even higher in patients with periodontal dysfunc-
tion [5]. The main symptoms of PI include swelling of
the peri-implant mucosa, bleeding gums, suppuration from
peri-implant pockets, increased probing depth, and implant
mobility. Severe cases can lead to extensive bone resorp-
tion and implant loss, affecting chewing function and over-
all health [6].

Currently, the mainstream view is that plaque accu-
mulation on the implant surface is the initiating factor for
PI. Therefore, clinical treatments for PI focus on plaque
control, including mechanical debridement, antimicrobial
therapy, and surgical intervention [7]. Mechanical de-
bridement involves the use of manual scaling, ultrasonic
cleaning, air polishing, and laser therapy to remove plaque
and calculus from the implant surface. However, tradi-
tional instruments often find it difficult to reach the unique
threaded structure of implants, making it challenging to re-
move deep-seated infections and toxins through mechani-
cal debridement alone [8]. Consequently, for patients with
peri-implant pockets deeper than 5 mm, thorough local de-
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Fig. 1. PD’s current treatment methods. Photoshop and Adobe Illustrator software were used for all images editing. PI, peri-implantitis.

bridement is often combined with local or systemic antimi-
crobial treatment. Commonly used antimicrobials include
chlorhexidine, tetracycline, and metronidazole, but antimi-
crobial therapy is less effective against deep-seated Gram-
negative anaerobes and can lead to bacterial resistance with
prolonged use [9].

For severe PI with significant cup-shaped bone re-
sorption, mechanical debridement and antimicrobial inter-
ventions may be ineffective, necessitating resective or re-
generative surgical treatment options. Surgical approaches
include flap surgery, debridement, resective surgery, and
guided bone regeneration. Although flapless surgical ac-
cess reduced surgical trauma, as reported by Carrillo de
Albornoz et al. [10], surgical instruments can damage the
implant surface, leading to re-accumulation of plaque and
calculus, with a high recurrence rate postoperatively [11].
Surgical treatments may not entirely eliminate deep-seated
infections or effectively control recurrences, especially in
complex and severe PI cases. Furthermore, maintaining
good oral hygiene and regular follow-ups require high pa-
tient compliance, which can affect treatment outcomes.

Currently, PI treatment methods are similar to those
for periodontitis, and the limitations of traditional treat-
ments, such as difficulty in removing deep-seated infec-
tions, significant trauma, high recurrence rates, and bac-
terial resistance, which significantly hinder effective treat-
ment outcomes effective treatment outcomes. In recent
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findings, it has been observed that by manipulating the im-
mune system’s reaction to periodontal pathogens, it is pos-
sible to mitigate inflammation. This strategy also helps in
managing the osteolytic conditions and facilitates the return
of normal bone formation processes. Such advancements
offer promising therapeutic avenues for the management of
PI [12]. Research has demonstrated that the immune re-
sponse is essential in both the initiation and progression of
PI. By modulating the host’s immune system, the inflam-
matory response associated with PI can be reduced, lead-
ing to an improved oral microenvironment and aiding in
the healing of peri-implant tissues, particularly bone tis-
sue [13]. Immunomodulatory therapy holds potential for PI
treatment, offering a more durable and effective treatment
option to better maintain oral health [14]. This article aims
to review the application of immunotherapy strategies in PI,
providing guidance for clinical practice and future research

(Fig. 1).

Pathophysiology of PI
Role of the Immune System

PI is a multifactorial disease involving complex inter-
actions between the immune system, microorganisms, and
host-related factors [15]. After implantation, the implant
acts as a foreign body, causing mesenchymal stem cells
(MSCs) around it to differentiate into osteoblasts, leading
to bone integration. Adequate bone volume and quality
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Fig. 2. The role of immune cells in P1. DAMPs, damage-associated molecular patterns; MAPK, mitogen-activated protein kinase; AP-
1, activating protein-1; NF-xB, nuclear factor-kappa B; IL, interleukin; TNF, tumor necrosis factor; MMPs, matrix metalloproteinases;
RANK, receptor activator of NF-xB; RANKL, receptor activator of NF-xB ligand; OPG, osteoprotegerin; OB, osteoblast; OC, osteoclast;
PAMPs, pathogen-associated molecular patterns.

around the implant are crucial for ensuring initial stability directly connected to the bone without a periodontal liga-
and surgical success [16]. However, because implants are ~ ment, blood flow to the periosteum is reduced. This re-
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sults in fewer nutrients and immune cells in the peri-implant
tissues, making dental implants more susceptible to con-
tinuous bacterial infections [17]. When pathogenic bacte-
ria invade peri-implant tissues, the immune balance is dis-
rupted, triggering an immune response. An imbalance be-
tween osteoblasts and osteoclasts leads to bone resorption
[18]. Understanding these factors is crucial for developing
new treatment strategies for PI.

Immune Cell Involvement

The immune response is driven by interactions be-
tween immune cells, facilitated through direct contact and
the release of cytokines and other mediators. When a
dental implant is placed into the alveolar bone, the first
thing that happens is the activation of our body’s natu-
ral immune system. This is all about recognizing things
from outside or stuff that comes from the host, which we
call pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs). Toll-like
receptors (TLRs) are like sensors that pick up on these
patterns. When they do, it kicks off some important pro-
cesses in our cells by activating key transcription factors
like mitogen-activated protein kinase (MAPK), activating
protein-1 (AP-1), and nuclear factor-kappa B (NF-xB).

The activation of these factors triggers a series of
downstream kinase signaling events, which recruit immune
cells to the site of infection or inflammation and pro-
mote the release of various inflammatory cytokines and
immunomodulators. This results in the neutralization of
harmful substances and the initiation of an inflammatory
response. Simultaneously, this process is vital for activat-
ing the adaptive immune system through antigen presen-
tation [19]. In managing PI, the immune system is essen-
tial for modulating the inflammatory response by control-
ling the production of pro-inflammatory cytokines, such as
interleukin (IL)-15, IL-6, tumor necrosis factor (TNF)-c,
prostaglandin E2, and matrix metalloproteinases (MMPs).
Additionally, the immune system also regulates the se-
cretion of anti-inflammatory cytokines like 1L-4 and IL-
10. Beyond cytokine regulation, the immune system ex-
erts control over the expression of proteins and genes that
are integral to bone resorption and destruction. This in-
cludes modulation of signaling pathways like receptor ac-
tivator of NF-xB (RANK)/receptor activator of NF-«<B lig-
and (RANKL)/osteoprotegerin (OPG), Wnt, Notch, and the
Hippo-YAP pathway, which are crucial in maintaining bone
health and preventing excessive bone loss [20-24] (Fig. 2).

Macrophages

Macrophages, along with neutrophils, are the first re-
sponders to infection, known for their ability to recognize,
phagocytize, and clear pathogens. The immune system also
facilitates antigen presentation to T cells, which is pivotal in
triggering an adaptive immune response. This process in-
volves the induction of co-stimulatory molecules on other
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antigen-presenting cells (APCs), thereby enhancing the ac-
tivation of T cells [25]. In the context of macrophage ac-
tivity, these cells can be classified into M1 and M2 phe-
notypes, distinguished by their functional roles. The state
of these macrophages can dynamically change in response
to the stimuli they encounter, allowing them to adapt their
functions to the specific needs of the immune response.
This flexibility is crucial for the effective management of
various immune challenges.

M1 macrophages are pro-inflammatory, and their pro-
longed activation can lead to chronic inflammation, disrupt-
ing the balance of bone tissue. Excessive activation around
implants can result in fibrosis and failure of osseointegra-
tion [26]. Research has shown a significant increase in
the number and density of M1 macrophages in PI lesion
tissues [27]. Their unique phagocytic function can cause
alveolar bone loss in PI. Additionally, the secretion of pro-
inflammatory cytokines, such as IL-13, IL-6, IL-8, IL-18,
TNF-q, and reactive oxygen species (ROS), promotes the
differentiation and maturation of osteoclasts, leading to in-
creased bone resorption [28,29].

When the infection is brought under control and the
body begins to transition toward repair, M1 macrophages
can shift to M2 macrophages. These M2 macrophages
possess anti-inflammatory properties and are linked to in-
creased osteoblast activity during the bone healing pro-
cess, aiding in bone reconstruction and maintaining home-
ostasis [30,31]. M2-type macrophages play a key role in
our immune response by releasing anti-inflammatory sub-
stances like IL-4 and IL-10. These substances are super im-
portant for helping osteoprogenitor cells and mesenchymal
stem cells (MSCs) grow and mineralize, which ultimately
boosts bone formation. Plus, M2 macrophages also ramp
up the production of vital markers for bone growth, such
as bone morphogenetic protein (BMP)-2, alkaline phos-
phatase (ALP) and OPG. This upregulation is vital for fa-
cilitating tissue healing and promoting osteogenic differ-
entiation, which are critical for the restoration and main-
tenance of bone health [32,33]. In addition to their anti-
inflammatory functions, M2 macrophages also contribute
to bone health by secreting pro-osteogenic factors. On-
costatin M (OSM) is one such factor that is particularly
effective in promoting the differentiation and mineraliza-
tion of osteoblasts. This process is essential for bone re-
generation and repair, primarily facilitated by the activa-
tion of the signal transducer and activator of transcription
(STAT)3 signaling pathway. The engagement of this path-
way by OSM and other factors secreted by M2 macrophages
significantly orchestrates the complex biological processes
that drive bone remodeling and restoration [34,35]. Regu-
lating macrophage polarization is crucial in treating bone-
related diseases like osteoporosis and fracture healing, and
is closely linked to the treatment of PI (Fig. 3).
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Fig. 3. Macrophages and bone metabolism. ROS, reactive oxygen species; BMP, bone morphogenetic protein; ALP, alkaline phos-

phatase; OPN, osteopontin; OSM, oncostatin M; MSCs, mesenchymal stem cells; IFN, interferon; LPS, lipopolysaccharides.

T Cell

T lymphocytes mediate cellular immunity and are the
most predominant immune cells in the peri-implant mu-
cosa, accounting for approximately 57.6 + 11.2 % [36].
Among the various subsets of T cells, CD4+ T cells, also
known as helper T (Th) cells, have a particularly significant
role in the context of PI [37]. Th cells are vital to almost ev-
ery aspect of the adaptive immune response. These cells can
modulate the functions of B cells and CD8+ T cells by inter-
acting with foreign antigens presented by APCs. Addition-
ally, CD4+ T cells can stimulate natural killer (NK) cells
and macrophages, thereby enhancing their activity. This
multifaceted role of Th cells in immune regulation is cru-
cial for orchestrating an effective immune response against
pathogens and maintaining immune homeostasis [38—40].

Th cells differentiate into various effector subsets, in-
cluding Th1, Th2, Th17, and regulatory T (Treg) cells [41].
Treg cells may act as a compensatory mechanism in PI,
reducing tissue damage caused by excessive immune re-
sponses [42]. Research findings suggest a dynamic shift
in the balance of T cell subsets as PI evolves. Specifi-
cally, there is an observed increase in the prevalence of
Thl and Th17 cells, which are typically associated with
pro-inflammatory responses. Concurrently, there is a noted
reduction in the proportion of Th2 cells, which are more
commonly linked to anti-inflammatory and regulatory func-
tions. Additionally, the study of Treg cells—known for
their regulatory role in maintaining immune tolerance—
shows an initial increase in their presence within lymph
nodes. However, this increase is followed by a subsequent
decrease over time. These changes in T cell subset pro-
portions are indicative of the complex interplay between
different immune responses during the progression of PI,
highlighting the need for a nuanced understanding of im-
mune dynamics in the context of implant-related diseases.
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Research shows that level of IL-17 is significantly lower in
healthy peri-implant tissues compared to PI patients [43].
Changes in these levels, along with RANKL and Notch 1
expression, may jointly lead to increased osteoclast activity
and bone resorption in PI [21].

In the PI healing phase, Th2 lymphocytes emit cy-
tokines IL-4 and IL-13, which are crucial for the induc-
tion of M2 macrophage polarization. This polarization is
essential for the resolution of inflammation and the pro-
gression of tissue repair [44]. These cytokines inhibit the
activation of NF-xB and mitogen-activated protein kinase
(MAPK) through the STAT6 signaling pathway, increas-
ing OPG secretion by osteoblasts. This blocks the inter-
action between RANKL and RANK, inhibiting osteoclast
formation and differentiation [45]. Th2 cells also regulate
bone metabolism balance through interactions with other
immune cells such as type 2 innate lymphoid cells (ILC2s)
[46]. Th17 cells contribute to PI by secreting IL-17. Ele-
vated levels of IL-17 inhibit autophagy in osteoblasts and
promote their differentiation, calcification, and RANKL
expression via the Janus kinase-2/STAT3 signaling path-
way [47]. Another study indicates that IL-17 can acti-
vate the protein kinase B (AKT), STAT3, and extracellular
signal-regulated kinase 1/2 (ERK1/2) pathways in an IL-
6/IL-13-dependent manner, promoting osteoblast differen-
tiation [48]. In summary, T cell differentiation and the se-
cretion of related cytokines play crucial roles in regulating
PI inflammation and bone homeostasis and serve as poten-
tial targets for PI immunomodulation.

Others

In addition, Langerhans cells, neutrophils, NK cells,
and B cells are also present in PI tissues [36]. Their rela-
tionship with PI is summarized in Table 1 (Ref. [49-61]).
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Table 1. Relationship of other immune cells to PI.

Immune cell Function Association with PI Reference
In PI, the number of Langerhans cells is significantly reduced.
Dendritic cells Excess titanium ions can lead to the incomplete development
APCs o ‘ [49,50]
(Langerhans cells) of Langerhans cells, causing immune dysregulation.
They are directly involved in inducing osteoclast formation
and bone loss.
As osteoclast precursors, they can further develop into dendritic
cell-derived osteoclasts under inflammatory conditions.
Neutrophils have a high detection rate in PI. They dominate
. Phagocytosis, secretion the tissues around PI compared to periodontitis, and their
Neutrophils . . o [51-55]
of various cytokines, cell size is significantly larger.
and chemotactic factors ~ Neutrophils release extracellular traps and ROS, increasing
to recruit and activate osteoclast formation through RANKL signaling,
other immune cells which leads to osteoblast apoptosis.
Recognize and kill A higher proportion of activated NK cells is detecte in PI.
NK cells ) ] [56-58]
target cells They secrete cytokines such as TNF-« and interferon (IFN)-v,
regulate osteoblast apoptosis, and promote osteoclast formation.
Antigen presentation B cells may be involved in the chronic inflammatory process of PI.
B cells [59-61]

and antibody production

They express RANKL and transforming growth factor (TGF)-38

to regulate bone homeostasis.

PL, peri-implantitis; APCs, antigen-presenting cells; ROS, reactive oxygen species; RANKL, receptor activator of NF-xB ligand; NK,

natural killer; TNF, tumor necrosis factor.

Microbial Factors

Similar to periodontitis, the current mainstream view
is that the initiating factor of PI is the plaque biofilm. In
the early stages of implant placement, bacteria (mainly
Gram-positive cocci and rods) adhere to the implant sur-
face through nonspecific forces such as electrostatic inter-
actions, forming an initial layer. Over time, this biofilm
evolves into a more complex microbial community. The
predominant bacteria around PI lesions are obligate anaer-
obic Gram-negative bacteria. In the context of PI, a vari-
ety of bacterial species are frequently implicated. These
include asaccharolytic anaerobic Gram-positive rods and
other Gram-positive bacteria. Species such as Porphy-
romonas gingivalis (Pg), Prevotella intermedia (Pi), Fu-
sobacterium nucleatum (Fn), and Aggregatibacter acti-
nomycetemcomitans (Aa), alongside Tannerella forsythia
and Treponema denticola, are frequently identified strains
within the oral microbiome. Additionally, various strains
of Fn are also commonly recognized in this context. Addi-
tionally, rarer opportunistic pathogens, such as enterobac-
teria and Staphylococcus aureus (Sa), are also sometimes
reported in association with PI. These diverse microbial
agents contribute to the complex etiology of PI, underscor-
ing the importance of a comprehensive approach to diagno-
sis and treatment [62]. The presence of Pg, Pi, Fn, and Aa
is significantly associated with peri-implant disease condi-
tions [63—66]. Moreover, the presence of Sa makes the peri-
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implant tissues more prone to severe purulent inflammation
[67] (Table 2, Ref. [68-78]).

Host Factors

PI often tends to recur in individuals, meaning that a
patient who has previously experienced PI is likely to have
it again under similar risk factors. However, in some cases,
exogenous factors alone cannot fully explain the occurrence
of PI, and genetic susceptibility is also considered a risk
factor for PI [79]. From the late 20th century onwards,
research has extensively explored the link between single
nucleotide polymorphisms (SNPs) and PI. This scholarly
focus has been on delineating the impact of inflammatory
cytokines within the realms of immune modulation, inflam-
matory reactions, and skeletal metabolism. Key molecules
of interest include IL-1, IL-6, IL-10, IL-17, MMPs, and
TNF-a.. Genetic polymorphisms in these cytokines are hy-
pothesized to modulate an individual’s predisposition to pe-
riodontal inflammation PI and their therapeutic responsive-
ness [80—84]. Additionally, research has reported on the re-
lationship between PI and polymorphisms in genes related
to the RANK/RANKL/OPG signaling pathway, Fcy recep-
tor, epidermal growth factor (EGF), and CD14 [85-88]. In-
terestingly, some studies have produced conflicting conclu-
sions about the association between the same susceptibility
gene loci (e.g., TNFa-308 A/G) and PI, which may be due
to differences in sample origin, sample size, and the con-
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Table 2. Interaction between pathogens and host immune response.

Pathogens ~ Immunomodulatory effects Effect on PI Reference
Gingipains allow Pg to invade gingival
epithelial cells and evade immune clearance;
activates macrophages to an M1 phenotype,
increasing lysosome and ROS production; Triggers host immune inflammatory
induces apoptosis in CD4+ T cells; response; promotes osteoclast differentiation
Pg releases pro-inflammatory cytokines IL-1, through RANKL, increasing osteoclast [68-71]
IL-6, IL-17, and TNF-«; downregulates precursor numbers and activity, leading to bone
Treg-related transcription factors, tissue destruction around implants
inhibiting anti-inflammatory cytokines TGF-/3
and IL-10; disrupts host immune defense
by exploiting the complement system
Triggers host immune inflammatory
. Stimulates immune cells to secrete response; disrupts the OPG/RANKL/RANK
Pi . . . . [72]
inflammatory mediators and MMPs pathway, causing bone resorption
and destruction around implants
. Triggers host immune inflammatory
Induces M1 macrophage transformation; o .
. . response; Fn inhibits osteogenic
upregulates NLRP3 inflammasome and various . - .
; . . differentiation by reducing ALP
Fnand Aa  pro-inflammatory cytokines including IL-1.3 . . ) . [73-76]
activity, mineralized nodule formation,
and TNF-q; generates ROS; Fn damages . .
. and the expression of osteogenic genes
neutrophils, lymphocytes, and macrophages .
and proteins
Invades host cells and can penetrate
bone trabeculae to evade immune detection; Initiates an inflammatory response; causes
S induces IL-1, IL-2, IL-6, and TNF-« secondary bone degradation by inducing [77.78]
a >

secretion via NF-«B signaling;
regulates T cell proliferation, differentiation,

and apoptosis through the MAPK pathway

osteoblast apoptosis through TNF-related

apoptosis-inducing ligand

Pg, Porphyromonas gingivalis; Pi, Prevotella intermedia; Fn, Fusobacterium nucleatum; Aa, Aggregatibacter actinomycetemcomitans; Sa,

Staphylococcus aureus; MMPs, matrix metalloproteinases; NLRP3, receptor thermal protein domain associated protein 3; IL, interleukin;

NF-xB, nuclear factor-kappa B; MAPK, mitogen-activated protein kinase; OPG, osteoprotegerin; RANK, receptor activator of NF-xB;

ALP, alkaline phosphatase.

trol of specific stimulus factors [82,83]. Consequently, it
is imperative to conduct extensive research to ascertain the
correlation between PI and a spectrum of genetic propensi-
ties.

Beyond genetic variations, smoking is a significant
factor influencing the immune system. It impairs neutrophil
activity, diminishes the body’s defense mechanisms, and
disrupts the inflammatory response. Research indicates that
individuals with PI who smoke exhibit elevated levels of
pro-inflammatory cytokines, including IL-1/5, I1L-6, IL-8,
MMP-1, and TNF-q, in their gingival crevicular fluid, sur-
passing those found in non-smokers [89,90]. Additionally,
there is evidence that smoking may have a detrimental im-
pact on the bone tissue surrounding dental implants and can
intensify PI by influencing osteoblast activity and the syn-
thesis of bone matrix proteins [91]. While the relationships
between PI and autoimmune diseases [92], diabetes [6,93—

www.ecmjournal.org

95], and occlusion [96-98] have also been reported, there
is currently no definitive scientific evidence, and further re-
search with larger patient cohorts is needed in the future.

In summary, the interaction between PI and the im-
mune system can be described as follows: During the early
innate immune phase of PI, there is an increase in com-
plement, macrophages, and neutrophils in the peri-implant
tissues, with a predominance of M1 macrophages. These
cells produce pro-inflammatory mediators such as IL-15,
which not only facilitate the formation of multinucleated gi-
ant cells to encapsulate and clear particulates but also influ-
ence the recruitment of other inflammatory cells in the mi-
croenvironment. Additionally, a reduction in macrophage-
derived Wnt ligands decreases the recruitment of MSCs
and CD4+ T cells, thereby impacting the early immune and
osteogenic response around the implant [99]. Simultane-
ously, the implant surface is recognized by the complement
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system, and the combined effect of complement proteins
with IL-15 from M1 macrophages and C3a and C5a from
neutrophils induces the release of IL-6 and IL-8. This up-
regulates the expression of RANKL/OPG through NF-«<B
receptor activation, regulating the osteoimmune response
in the pro-inflammatory environment and promoting osteo-
clast development and bone remodeling [100]. With the
attachment of microbial biofilm, immature dendritic cells
capture microorganisms and their antigens, while mature
dendritic cells stimulate T cells to respond to these captured
antigens, initiating the adaptive immune response [101].

In the adaptive immune phase, when cells encounter
antigens, intracellular pathogens may activate a Thl cell-
mediated immune response dominated by T lymphocytes,
macrophages, and natural killer cells. In contrast, extra-
cellular pathogens may activate a Th2 humoral immune
response, primarily involving plasma cells [36]. Fur-
thermore, when dendritic cells stimulate T cell prolifera-
tion, they also activate CD4+ T cells to express RANKL.
RANKL then mediates further T cell proliferation, increas-
ing T and B cell survival. Through the combined effects of
Th cells and Treg cells, monocytes differentiate into regu-
latory dendritic cells, forming a positive feedback loop that
enhances Treg-mediated immunoregulation. The overex-
pression of RANKL also increases the RANKL/OPG ratio,
enabling RANKL to interact with NF-xB receptors on os-
teoclast precursors, promoting osteoclast maturation, dif-
ferentiation, and bone resorption. The persistent elevation
of Th1 and Th17 cells and a decline in Treg cells may cause
bone resorption in PI [102]. In addition to IL-6 and IL-8,
which are both involved in bone resorption and irritation,
Th17 tissue can trigger neutrophils and macrophages [43].

The development of PI, where TLR is crucially in-
volved in B cell-mediated inflammatory responses, is also
affected by the relationship between the B and T cells. In PI,
bone resorption and inflammation are promoted by research
that has shown that TLR4 can upregulate the RANKL/OPG
ratio and TNF expression [61]. By combining Th17/Treg
cells, regulation of B cells, especially B10 cells, produces
IL-10 to encourage Treg cell identification and stop native
Th17 cell growth. Pl-inflammatory damage is reduced by
lowering IL-17 and RANKL expression [103].

Current Imnmunomodulatory Strategies

Currently, the main clinical immunotherapy methods
for PI involve the local or systemic administration of var-
ious anti-inflammatory drugs, immunomodulators, and bi-
ological agents to help balance inflammation and immune
response.

Non-Specific Immunomodulation

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
NSAIDs, such as ibuprofen, aspirin, and naproxen

sodium, work by inhibiting cyclooxygenase, which reduces

the synthesis of prostaglandins. Prostaglandins are impor-
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tant inflammatory mediators in PI that can stimulate os-
teoclasts and lead to bone resorption. NSAIDs are mainly
used to treat pain and discomfort during the acute inflam-
matory phase of PI. Study has shown that short-term low-
dose ibuprofen treatment can continuously improve the gin-
gival condition in PI patients [104]. Short-term systemic
administration of ibuprofen after implant placement can aid
early wound healing without affecting marginal bone loss
around the implant [105]. Naproxen sodium can signif-
icantly reduce plasma IL-6 levels six hours after implant
surgery [106].

Corticosteroids

Corticosteroids, such as prednisone and dexametha-
sone, reduce cell-mediated immune responses by decreas-
ing the production of prostaglandins and leukotrienes. They
inhibit the expression of IL-1, IL-6, and TNF-«, and reduce
T cell proliferation. Additionally, corticosteroids lower
the humoral response by reducing B cell counts and an-
tibody production, making them widely applicable due to
their strong anti-inflammatory and immunosuppressive ef-
fects [107]. In the treatment of PI, corticosteroids are often
used locally, such as through oral sprays, ointments, or local
injections. Research has shown that covering the implant
surface with dexamethasone can significantly increase the
OPG/RANKL ratio and stimulate osteoblast differentiation
[108].

Cytokine Inhibitors

Although the mechanisms of bone resorption in PI are
complex, the activation of pro-inflammatory cytokines is
a key component of the PI cascade. Cytokine inhibitors
work by blocking the binding of cytokines to their recep-
tors on target cells, thus inhibiting inflammatory signaling
pathways and reducing inflammation. Therefore, cytokine
inhibitors targeting pro-inflammatory cytokines can help
mitigate bone loss caused by inflammation [109]. Study
has shown that rats treated with TNF-« inhibitors expe-
rience milder inflammatory responses, fewer osteoclasts,
and lower levels of TNF-o, RANKL, and OPG during
wound healing, indicating that TNF-« inhibitors not only
reduce inflammation but may also enhance bone repair in
the jaw [110]. Kim ef al. [111] reported similar find-
ings. IL-1 receptor-associated kinase 4 inhibitors can block
M1 macrophage activation and disrupt osteoclast forma-
tion, thereby promoting osteoblast differentiation and im-
proving osseointegration [112].

Others

In addition to the drugs mentioned above, non-specific
immunomodulators like resolvins, melatonin, and certain
biological extracts have shown promising potential for
treating PI (Table 3, Ref. [113-118]).
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Table 3. Non-specific immunomodulators in PI treatment.

Immunomodulators ~ Immunomodulatory effects Effect on PI Reference
Anti-inflammatory; protects osteoblasts from
. damage by inflammatory mediators, reduces bone
Reduces the number of neutrophils in . . . o
. . loss; promotes proliferation and differentiation of
. tissues; reduces bone loss mediated L . .
Resolvin L osteoblasts, aids in the repair and regeneration [113]
by Th1 adaptive immune response; . s
. of bone tissue; decreases RANKL expression, inhibits
decreases IFN-vy expression ) .
osteoclastogenesis and activity, promotes bone
matrix formation.
Decreases TLR4 protein levels, inhibits . .
. . Reduces inflammatory response, mitigates bone
. NF-xB signaling pathway to L i .
Melatonin resorption, inhibits osteoclasts while promoting the [114]
downregulate TNF, IL-1/, and IL-6 ) o .
) differentiation and function of osteoblasts
expression levels
o . . . Reduces bone loss, alleviates inflammatory infiltration,
Mangiferin Inhibits IL-6 and TLR2 signaling ) ) [115]
has a protective effect on bone tissue
. Reduces inflammatory response and promotes
Reduces TNF-a and IL-17 expression; . . o o
. . o the proliferation and osteogenic differentiation of
Icariin promotes the differentiation and [116]
. bone marrow mesenchymal stem cells (BMSCs),
maturation of osteoblasts B .
facilitates new bone formation
Reduces inflammatory response and promotes
Inhibits the overexpression of M 1 the osteogenic differentiation of BMSCs;
. macrophages, induces M2 macrophage  curcumin-modified surfaces can increase
Curcumin . . . o [117]
differentiation,and promotes BMSCs migration capacity, improve
osteogenic differentiation osteocyte adhesion and proliferation, enhance
bone regeneration ability
Inhibits PI inflammation and reduces RANKL-induced
. . . osteoclast differentiation, decreases the number and
Reduces inflammatory cell infiltration . o .
i size of osteoclasts, and inhibits the formation of
. around implants; acts on NF-xB and o . )
Asperuloside F-actin rings and bone resorption function; [118]

ERK1/2 signaling pathways to inhibit

osteoclastogenesis

downregulates nuclear factor-activated T cell 1 (NFATc1)
and c-Fos gene and protein expression, directly inhibits

osteoclastogenesis and function

IFN, interferon; TLR, Toll-like receptor; ERK1/2, extracellular signal-regulated kinase 1/2; Th, helper T.

Specific Immunomodulation

Immune Checkpoint Inhibitors

Immune checkpoints are regulatory proteins on im-
mune cells designed to mitigate the harm from excessive
T cell activity, thereby preventing inflammatory damage.
Pivotal among these are cytotoxic T-lymphocyte antigen-
4 (CTLA-4), programmed death-1 (PD-1), and its ligand
(PD-L1), which are instrumental in modulating immune re-
sponses. While PD-1/PD-L1 blocking agents do not di-
rectly intervene in bone formation processes, they are capa-
ble of indirectly preserving bone integrity. This is achieved
by inhibiting the differentiation of osteoclasts via the sup-
pression of the STAT3/nuclear factor-activated T cell 1
(NFATc1) signaling pathways, thereby potentially offering
a protective effect against bone loss in certain conditions

www.ecmjournal.org

[119]. Another study found that PD-1/PD-L1 inhibitors sig-
nificantly reduce the expression of IL-1/3, IL-6, and TNF-a.
They also maintain effective immune clearance and reduce
the release of inflammatory factors by increasing IL-10 ex-
pression and reducing macrophage apoptosis [120]. Addi-
tionally, in the immune response to PI, the overexpression
of CTLA-4 can induce the release of anti-inflammatory cy-
tokines, thereby reducing the proliferation of Th and cy-
totoxic T cells, inhibiting neutrophils, and promoting the
transformation of macrophages to the M1 type. CTLA-
4 inhibitors can inhibit this inflammatory response [121].
Currently, research on the application of immune check-
point inhibitors in PI treatment is still in its early stages,
and their exact mechanisms and efficacy require further in-
vestigation.
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Targeted Monoclonal Antibodies

In recent years, researchers have developed mono-
clonal antibodies targeting toxins produced by Sa, Strep-
tococcus pyogenes, Clostridium difficile, and Escherichia
coli. For antibiotic-resistant bacteria, these antitoxin mon-
oclonal antibodies can significantly improve the success
rates of antibiotic treatments when used as adjunct ther-
apy [122]. A human monoclonal antibody, TRL1068,
which targets biofilm anchoring proteins, has demon-
strated high affinity for Sa biofilms and can disrupt their
three-dimensional structure, reducing bacterial aggregation
[123]. While targeted monoclonal antibodies represent a
promising systemic treatment strategy for implant infec-
tions, their direct application in treating PI remains limited.

Vaccine

Pg and Pi are the main pathogens associated with pe-
riodontitis. Studies have found that an arginine-gingipain
A gene vaccine from Pg produces immunoglobulin (Ig)G
and sIgA antibodies, effectively reducing bone loss in a ca-
nine Pl model [ 124]. A capsule-conjugate vaccine based on
Pg has also been shown to protect mice from Pg-induced
oral bone loss [125]. Using a structural biology approach,
Yadalam et al. [126] designed an immunoinformatic vac-
cine targeting Pg for PI, which reduces the occurrence of PI
by stably interacting with the TLR2 immune receptor. Ad-
ditionally, a CCL19-conjugated cleaved adhesin DNA vac-
cine shows promise as an innovative targeted immunother-
apy strategy against Pg-induced PI [127].

Adjunctive Therapies
Probiotics and Prebiotics

The Food and Agriculture Organization of the United
Nations (FAO) characterizes probiotics as “live microor-
ganisms which, when administered in adequate amounts,
confer a health advantage to the host” [128]. Such advan-
tageous bacteria contribute to the handling of PI by com-
peting with detrimental microbes for adhesion points, regu-
lating the immune reaction, and generating substances with
antibacterial properties. This multifaceted approach helps
maintain oral health and potentially enhances the success
of dental implants [129]. In vitro study has shown that pro-
biotics like Lactobacillus reuteri can inhibit Pg, Pi, Strep-
tococcus salivarius and Sa [130]. A triple-blind random-
ized clinical trial demonstrated that adjunctive probiotic
therapy can significantly improve PI symptoms for at least
90 days [131]. Additionally, research indicates that probi-
otics can suppress inflammation by regulating gut micro-
biota, reflected in reduced serum inflammatory cytokine
levels and balanced distributions of CD4, IL-17A, Th17
cells and CD4, CD25, Foxp3 Treg cells. Probiotics can
significantly inhibit inflammatory alveolar bone resorption
by regulating bone immune responses [132]. Their benefi-
cial effects on the skeletal system may be closely linked to
the RANKL/RANK/OPG pathway [133]. Other study has
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shown that probiotics promote the expression of Tfam in
osteoblasts by mitigating the Tlr4-miRNA-138-H3K27me3
epigenetic cascade [134].

Prebiotics, in contrast to probiotics, are organic
compounds—often non-starch  polysaccharides  or
oligosaccharides—that the host cannot digest or ab-
sorb. They selectively foster the proliferation and activity
of beneficial bacteria within the body, enhancing overall
health. Unlike probiotics, which consist of live microor-
ganisms, prebiotics do not contain such organisms. This
distinction makes their effects more consistent and endur-
ing, and potentially safer for individuals with weakened
immune systems. Their primary health benefit is the
enhancement of immune function through the stimulation
of beneficial bacteria growth [135]. Study has shown
that prebiotics can improve bone mineral density, bone
mineral content, and bone biomechanical properties [136].
Supplementing with prebiotics positively affects bone
mineral metabolism, and specific amounts or types of
prebiotics can improve bone density and control bone
resorption [137].

Nutraceuticals

Nutraceuticals are products that provide health bene-
fits beyond their nutritional value, often used both as nu-
tritional supplements and medicinal remedies. They have
been proven effective as adjunct treatments for various in-
flammatory diseases. Studies indicate that nutraceuticals
can significantly reduce clinical discomfort and the release
of inflammatory mediators after root planning [138]. Mc-
Carty and colleagues [139] conducted an extensive review
of the literature, identifying that a variety of nutraceuti-
cals exert protective effects on bone health through distinct
mechanisms. These include getting sirtuin 1 going, activat-
ing the adenosine 5’-monophosphate-activated protein ki-
nase, firing up the nuclear factor-erythroid 2-related factor 2
(Nrf2) transcription factor, and boosting soluble guanylate
cyclase. Also, some natural supplements like apigenin, cur-
cumin, and resveratrol have been shown to boost the levels
of runt-related transcription factor 2 (Runx2), small mother
against decapentaplegic (Smad)5, collagen type [ (COLL1),
COLL4, and COLLS. This helps in healing big bone defects
in the skulls of rats [140]. Genistein and lycopene, recog-
nized as nutraceuticals, are capable of promoting bone for-
mation and inhibiting bone resorption via distinct molecular
pathways. They exert their effects through mechanisms like
the Wnt/S-catenin and Nrf-2 signaling pathways, thereby
playing a role in bone health [141]. These findings suggest
that nutraceuticals have potential as adjunct treatments for
PIL

Emerging Immunomodulatory Therapies

The immune system is a very well-regulated and
steady system that maintains a particular degree of stabil-
ity even though regular treatment techniques are now being
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Fig. 4. Recent advances in immunotherapy. (a) Cytokine profiles of AT-MSCs-CM, BM-MSCs-CM, G-MSCs-CM, PL-MSCs-CM,
and UC-MSCs-CM from 2D and 3D cultures. (A) Heatmap of 41 cytokines in CM from five sources scaled to row z-score; (B) stacked
bar chart showing the ratio between the volumes of secretomes of different CM and corresponding pie charts with cytokine profile struc-
ture [178] Copyright ©2023, The Author(s). (b) DNA nanotechnology-enabled drug delivery systems [249] Copyright ©2019, American
Chemical Society. (c) Potential molecular mechanism of how M2 macrophage polarization activated by a biomimetic hierarchical nanoin-
terface contributes to endogenous bone regeneration [235] Copyright ©2019, American Chemical Society. TGF, transforming growth
factor; IFN, interferon; EGF, epidermal growth factor; 2D, two dimensional; 3D, three dimensional; FGF, fibroblast growth factor; MIP,
macrophage inflammatory protein; PDGF, platelet-derived growth factor; MDC, macrophage-derived chemokine; RANTES, regulated
on activation normal T cell expressed and secreted; GM-CSF, granulocyte-macrophage colony-stimulating factor; sSCD40L, soluble CD40
ligand; VEGF, vascular endothelial growth factor; MCP, monocyte chemoattractant protein; G-CSF, granulocyte colony-stimulating fac-

tor; GRO, growth-related oncogene; IP-10, interferon-y inducible protein-10.

used quite frequently in medical settings. Traditional treat-
ments have anti-inflammatory effects, but they also have
the potential to exaggerate the host immune response, caus-
ing pro-inflammatory cells to multiply and cause adverse
reactions [142]. However, long-term use of non-steroidal
NSAIDs may increase the risk of PI, possibly as a result of
their inhibitory effects on platelet and bone formation [ 143].
Additionally, high glucocorticoid concentrations and pro-
longed use may have an impact on how well cells and tis-
sues function, leading to dental tissue damage, infection
risk, and impaired immune function [143,144]. Further-
more, long-term cytokine inhibitor recipients have reported
severe infections and lost peri-implant bone tissue [145].
The prevalence of these thoughts in cancer therapy ranges
from 54 to 76 % despite the unusual cases of immune check-
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point antagonists in PI treatment. The timing, severity, and
affected organs are frequently uncertain due to serious reac-
tions that could cause life-threatening events [146]. There
are now uncountable numbers of specific bioproducts, tar-
geted stereo antibodies, vaccines, nutraceuticals, bacteria,
and germs that are used as adjunctive therapies for PI. The
primary objective of the current research is to increase im-
munotherapy’s performance while reducing expected part
effects. With the development of technology, learning PI
women’s DNA to create more specific treatment plans has
become a hot topic of study. Additionally, stem cells, with
their unique abilities for self-renewal and multi-lineage dif-
ferentiation, are considered a powerful tool for the repair
of Pl-affected tissues. Nanomaterials, due to their unique
physical and chemical properties, can target specific im-
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mune cells and modulate inflammatory and regenerative
processes, presenting limitless potential in the application
of immunotherapy for PI [147].

Gene Therapy
Mechanisms and Potential Applications

Gene therapy, an emerging immunotherapy method,
aims to repair or replace disease-causing genes. It works
through three main mechanisms: (1) Replacement: Re-
placing the faulty gene with a normal one to achieve sta-
ble, controllable, and targeted expression, thereby protect-
ing and repairing damaged tissues; (2) Silencing: Silenc-
ing the expression of malfunctioning genes; (3) Insertion:
Introducing a new or modified gene [148]. Gene therapy
can use gene delivery, gene editing, and gene regulation
methods to reduce local inflammation around implants, in-
hibit bone resorption, and promote new bone formation,
thereby alleviating PI symptoms and offering a novel treat-
ment approach [149,150]. Zhang and colleagues [151] uti-
lized bioinformatics to scrutinize publicly accessible data,
pinpointing IL-6, TLR4, Fibronectin, IL-143, IL-8, MMP-
9, and macrophage-derived osteopontin as promising can-
didates for gene therapy interventions in the context of PI.
This approach suggests a targeted strategy for managing PI
by modulating these key genetic factors.

Current Research and Clinical Trials

Gene Delivery. At present, viral vectors are the predom-
inant choice for gene delivery in the treatment of PI. Re-
searchers, such as Hou and colleagues [152], have lever-
aged adenoviral vectors to specifically target the 420 gene.
Through inducing 420 knockdown and overexpression in
mice, they have shown that 420 can suppress bone re-
sorption and prevent the polarization of M1 macrophages
mediated by nucleotide-binding oligomer-zation domain
(NOD) like receptor thermal protein domain associated
protein 3 (NLRP3). This approach highlights the poten-
tial of gene therapy in modulating the immune response
and bone metabolism in PI. Adenoviral vectors containing
semaphorin 3A (Sema3A) have been shown to have pos-
itive effects on early bone integration [153]. In diabetic
PI, reduced expression of macrophage Alk B homologue
5 (ALKBHY) is associated with abnormal cell polarization
and inhibited osteoblast differentiation. Weng et al. [154]
achieved ALKBHS overexpression through a lentiviral vec-
tor and demonstrated that it can enhance osteoblast differ-
entiation and reduce inflammation in PI patients. Another
lentiviral vector based on autophagy protein Beclinl has
also been shown to reverse cell apoptosis caused by high
levels of IL-17A [155]. These results indicate that gene de-
livery has broad application prospects in PI treatment.

Gene Editing. The Clustered Regularly Interspaced Short

Palindromic Repeats (CRISPR) and CRISPR-associated
protein 9 (Cas9) technology is a highly efficient and pre-
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cise gene editing tool. Its core components are the CRISPR
sequence and the Cas9 protein. The CRISPR sequence,
derived from the immune system of bacteria and archaea,
can recognize and record the sequence information of ex-
ogenous genomes, while the Cas9 protein has the ability to
cut DNA. In the fascinating field of gene editing, a single-
guide RNA that is complementary to the target DNA se-
quence is carefully synthesized. This RNA then forms a
complex with the Cas9 protein. Together, this complex
has the remarkable ability to recognize and bind to spe-
cific sites within the target gene, allowing for exciting pos-
sibilities such as gene knockout, insertion, or replacement
[156,157]. Currently, CRISPR/Cas9 technology is used
for the treatment of various diseases. Ponta et al. [158]
used CRISPR/Cas9 technology to knock out the NF-xB
p65 gene in target cells, demonstrating resistance to the
pro-inflammatory environment when co-cultured with IL-
15. Farhang et al. [159] demonstrated the feasibility of
CRISPR/Cas9 technology in inhibiting the expression of
inflammatory cytokines TNF-« and IL-153. Kinane ef al.
[150], after reviewing numerous studies, suggested that us-
ing CRISPR to replace genetic haplotypes that cause I1L-8
response deficiencies to reduce inflammation or to modify
the epigenome, particularly by reducing TLR2-associated
DNA methylation to improve receptor function in biofilm-
related innate immune responses, is a feasible strategy for
PI treatment.

Gene Regulation. MicroRNA (miRNA) is a small non-
coding RNA. Dysregulated expression of miRNAs around
PI is considered a biological marker for early diagnosis
compared to successfully implanted patients [160]. Addi-
tionally, miRNAs can pair with complementary messenger
RNA in different animal branches to regulate gene expres-
sion post-transcriptionally. An experiment in a canine PI
model showed that miR-27a can positively regulate osteo-
genesis and angiogenesis by inhibiting TNF-a, promoting
new bone formation and bone integration in vivo [161]. An-
other study demonstrated that anti-inflammatory miR-146a
can inhibit RANKL-mediated PI bone resorption by regu-
lating TLR2/4 signaling and inhibiting TNF-« expression
[162]. Moreover, miR-128 can promote osteogenic differ-
entiation of stem cells, providing a promising approach for
PI treatment [163].

Cell-Based Therapies

MSCs. Stem cells have a wonderful ability to self-renew
and hold the exciting potential to differentiate into various
cell lineages. This dual capability makes them a corner-
stone in regenerative medicine and a subject of extensive
research for their therapeutic applications. This versatility
positions them as potent agents for tissue and organ repair.
Beyond their regenerative capabilities, stem cells also en-
gage in intricate interactions with immune cells, contribut-
ing to the maintenance of systemic homeostasis. These in-
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teractions are vital for both sustaining health and facilitating
therapeutic interventions in various diseases [164]. Stem
cells regulate the immune system mainly through direct
cell contact and the release of soluble factors. However,
they also respond to inflammatory environments, which can
control and modulate their activity. Pro-inflammatory cy-
tokines like TNF-a, interferon (IFN)-v, IL-1, and IL-17
can activate stem cells, prompting them to release cytokines
such as prostaglandin E2 (PGE2), IL-6, and IL-10, which
in turn influence the functions of immune cells [165-167].

Non-Odontogenic Stem Cells. The primary sources of
stem cells utilized in clinical settings include those derived
from bone marrow, adipose tissue, and peripheral blood.
These stem cells have demonstrated impressive potential
in facilitating new bone formation and integrating with im-
plants, particularly in the management of PI. Their regener-
ative and immunomodulatory properties make them valu-
able tools in enhancing the outcomes of dental and peri-
odontal treatments influence the functions of immune cells
[168-170]. Research indicates that bone marrow mes-
enchymal stem cells (BMSCs) can significantly enhance
the osseointegration rates of dental implants in both normal
and diabetic rabbits [171]. BMSCs are pivotal in immune
modulation, promoting the M2 macrophage phenotype to
reduce inflammation and inhibiting monocyte and T cell
activation. They secrete cytokines like IL-6 and Monocyte
chemoattractant protein-1, which are essential for immune
regulation and inflammation control, highlighting BMSCs’
value in immune-related therapies. Compared to other stem
cells, BMSCs offer unique advantages in multipotent dif-
ferentiation and immunomodulation, making them a key
player in regenerative medicine [172]. Exosomes derived
from adipose-derived mesenchymal stem cells can regu-
late macrophage polarization by increasing the expression
of M2 macrophage markers [173]. Peripheral blood mes-
enchymal stem cells not only promote the M2 transforma-
tion of macrophages but also exhibit anti-inflammatory ef-
fects through the Th17/Treg system [174]. Moreover, um-
bilical cord mesenchymal stem cells have been shown to
upregulate IL-10 expression in a rat PI model, helping to re-
duce inflammation. They can also regulate bone resorption
by increasing the expression of TGF-3, BMP-2, OPG, and
osterix, further enhancing osteogenic activity and implant
integration in PI rats through endogenous bone formation
[175].

Odontogenic Stem Cells. Recently, odontogenic stem
cells have gained attention for their potential in im-
munomodulatory therapy due to their minimal invasive-
ness and ease of acquisition. Periodontal ligament mes-
enchymal stem cells (PDL-MSCs), dental pulp stem cells
(DP-MSCs), and gingival mesenchymal stem cells are un-
der exploration for their therapeutic potential in PI [176—
179]. Research suggests that these oral-derived stem cells
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share immunomodulatory properties with BMSCs [180].
They can curb the proliferation of activated CD4 and CDS8
T cells, reduce the secretion of IFN-v and TNF-«, and
upregulate the expression of PD-L1, CTLA-4, IL-10, and
prostaglandin E2, thereby contributing to a balanced im-
mune response. Additionally, MSCs from supracrestal
gingival connective tissue have shown promise in im-
munomodulation by increasing IL-10 and TGF-/ while in-
hibiting TNF-a expression [181]. Additionally, an in vitro
experiment demonstrated that IL-37 can activate autophagy
in DP-MSCs, promoting their osteogenic differentiation
[182].

Stem Cell Combined with Gene Therapy. Combining
stem cell therapy with gene therapy has shown great
promise in treating PI. Gene therapy can significantly en-
hance the effects of stem cell treatments [183]. In a spe-
cific study, the use of lentiviral vectors to engineer canine
BMSCs with the TLR2 gene led to a marked increase in
the expression of hypoxia-inducible factor-1aw and BMP-
2. This upregulation fostered the expression of osteogenic
and angiogenic genes, indicating a capacity to bolster alve-
olar bone regeneration even in inflammatory settings. This
approach underscores the potential of gene-modified BM-
SCs in advancing bone healing and tissue repair in chal-
lenging conditions such as periodontal disease [184]. BMP-
2 gene therapy using PDL-MSCs demonstrated the ability
to promote new bone formation in two different PI models
[177]. Additionally, miR-758-5p plays a crucial role in the
osteogenic differentiation of PDL-MSCs [185].

Immune Cell Engineering. Immune cell engineering in-
volves modifying immune cells to recognize and respond
to disease states, functioning as “living drugs” when intro-
duced into the body. The most common techniques include
T cell receptor-engineered T cell therapy and chimeric anti-
gen receptor T cell technology [186]. Treg cell therapy is a
promising strategy for treating inflammatory diseases. Bit-
tner et al. [187] equipped mouse and human Treg cells with
inflammation-sensing mechanisms using artificial immune
receptors. These engineered Treg cells showed superior
protective effects compared to regular Treg cells, indicating
their potential for treating inflammation-driven diseases.
Tartrate-resistant acid phosphatase (TRAP)+ cells from the
macrophage lineage play a critical role in periosteal home-
ostasis and regeneration by secreting periosteum-inducing
proteins and recruiting periosteum-derived cells to the
periosteal surface [188]. Eaton et al. [189] designed
macrophages-cTLR4 cells that specifically regulate inflam-
matory responses and promote wound healing. Although
the use of immune cell engineering in PI treatment is still
limited, further research could confirm its efficacy.

Nanotechnology in Immunomodulation. Nanomaterials,
with their unique physical and chemical properties, have
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distinctive applications in immunomodulation. The char-
acteristics of nanomaterials, such as size, shape, surface
charge, and surface chemistry, can significantly influence
their function in the body. By carefully designing the
components and surface modifications of nanomaterials,
specific immune cells can be targeted, and inflammatory
and regenerative processes can be regulated, providing im-
mense potential for nanotechnology in PI immunotherapy
[147]. Immunomodulation in PI primarily involves im-
plant surface modification, metal nanoparticles, and using
nanocarriers to deliver various drugs and biological agents
targeting immune cells [190].

Implant Surface Modification. Implant surface modifica-
tion involves altering the physicochemical properties and
structure of biomaterial surfaces to enhance immune func-
tion. With advancements in nanotechnology, nanotube-
modified implant surfaces and various nanomaterial coat-
ings are used to modulate the immune response, improving
bone and soft tissue integration of dental implants.

Titanium Dioxide Nanotubes (TNTs). TNTs prepared us-
ing electrochemical anodization technology can selec-
tively reduce macrophage proliferation (immunomodula-
tion) while enhancing the activity of osteoblasts (bone
integration) and fibroblasts (soft tissue integration) com-
pared to traditional pure titanium implants [191]. The
surface morphology of TNTs significantly affects immune
cell behavior. Study shows that adjusting the diameter
of TNTs can promote filopodia formation in macrophages
and enhance M2 polarization by activating the RhoA/Rho-
associated protein kinase signaling pathway [192]. Ad-
ditionally, 30 nm diameter TNTs can spontaneously in-
duce M2 macrophage polarization [193]. TNTs also serve
as a controllable drug release system in nanodrug deliv-
ery. Shen et al. [194] used 70 nm TNTs to load dexam-
ethasone, encapsulated in chitosan, and co-cultured them
with primary osteoblasts and macrophages. This combi-
nation showed excellent osteogenic potential and reduced
inflammatory response in macrophages. Another exper-
iment achieved sequential release of IFN-y and IL-4 by
loading IL-4 at the bottom of nanotubes and encapsulat-
ing IFN-~ at the top with sodium hyaluronate. This se-
quential release caused macrophages to undergo phenotype
changes at specific times, regulating inflammation and pro-
moting osteogenic repair [195]. Ma et al. [196] applied
an aspirin/polylactic-co-glycolic acid (PLGA) coating over
icariin-loaded TiO5 nanotubes and found that this combina-
tion promotes M2 macrophage polarization, enhances cell
proliferation and adhesion, and improves the expression of
osteogenic genes and proteins, thereby promoting bone in-
tegration.

Graphene Family Nanomaterials (GFNs). GFNs are pop-
ular in implants due to their high surface area and
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ease of surface modification. They have antibacterial
and immunomodulatory effects by causing mechanical
damage to bacterial cell membranes, inhibiting bacte-
rial adhesion, inducing oxidative stress, and suppress-
ing bacterial metabolism. Additionally, they promote os-
teoblast differentiation and bone formation [197]. Study
shows that graphene-coated titanium implants can in-
duce M2 macrophage polarization in inflammatory con-
ditions, demonstrating strong immunomodulatory capabil-
ities [198]. Graphene oxide also restores and enhances
the osteogenic potential of BMSCs around implants [199].
The unique structure and high surface area of GFNs make
them effective slow-release carriers for drugs within tissues
[200].

Nano-Hydroxyapatite (nHA). nHA has excellent os-
teogenic properties and is widely used for implant sur-
face modifications [201]. It reduces inflammatory fac-
tor levels after root planning [202] and decreases the ad-
hesion of Streptococcus sanguinis around implants [203].
Thin sputter-coated HA on implant surfaces shows excel-
lent bone integration and less bone loss [204], possibly due
to nHA’s effect on T cell proliferation [205].

Metal Nanoparticles. Metal ions are crucial for transmit-
ting cellular signals and driving cell differentiation, and
they have good immunomodulatory properties. Metal
nanoparticles can manage PI through antibacterial actions,
immunomodulation, oxidative stress induction, and promo-
tion of osteogenesis. Chen ef al. [206] developed TNTs
loaded with silver nanoparticles that control the release of
low-dose Ag ions, which inhibit inflammation and pro-
mote bone healing by inducing M2 macrophage polariza-
tion. Another study synthesized an AuAg nanocomposite
from two types of metal ions. This nanocomposite effec-
tively suppresses ROS accumulation in cells and mitochon-
dria when exposed to bacterial biofilms and inhibits ROS-
triggered inflammatory protein expression via the MAPK
and AKT pathways [207]. Another experiment using the
peroxidase activity of cerium oxide combined cerium oxide
with gold nanorods to develop a Gold core@CeOs, which
triggers a potent ROS storm to disrupt pathogenic biofilms,
providing anti-inflammatory and bone-preserving effects
[208] (Table 4, Ref. [206,209-222]).

Nanocarriers for Targeted Drug Delivery and Immunomod-
ulatory Agents. Traditional anti-inflammatory drugs face
challenges such as low tissue specificity, poor water solu-
bility, and inefficient crossing of biological barriers. Sys-
temic administration of small molecules with immunomod-
ulatory activity often causes adverse effects. However, with
the advancement of nanotechnology, nanocarriers have
been widely applied in targeted drug delivery due to their
high surface area and high reactivity. Drug delivery sys-
tems, particularly nanocarriers, offer a sophisticated ap-
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Table 4. Immunomodulatory effects of metal nanoparticles.

Nanoparticles ~ Immunomodulatory effects

Reference

Induces apoptosis and M2 polarization of macrophages; downregulates the expression of inhibitor of NF-xB;

Ag o ) i [206,209-211]
inhibits the secretion of TNF-a, IL-6, and IL-1/; scavenges ROS; promotes new bone formation
A Reduces the expression of TNF-a, IL-13, IL-6, Cyclooxygenase-2, and NF-xB; inhibits RANKL-mediated [212.213]
u >
osteoclastogenesis
Modulates TLR4/NF-xB and MAPK signaling; promotes M1 polarization of macrophages, enhances bacterial
Cu phagocytosis; reduces NF-xB, TNF-«, and IL-6 expression, and enhances cellular antioxidants; increases [214,215]
BMP-6, osteocalcin, and Runx2 expression, promotes osteogenesis
7 Inhibits M1 polarization of macrophages; inhibits NF-xB expression; increases OPG and osteocalcin expression [216.217]
n >
to promote osteogenesis
M Inhibits macrophage activation; reduces nuclear translocation and phosphorylation of NF-xB; decreases the [218-220]
£ expression of IL-143, IL-6, and IL-10; has antioxidant activity; promotes osteogenesis
Ce Reduces bacterial adhesion; scavenges ROS; inhibits the expression of TNF-«, IL-6, and IL-13 [221,222]

BMP, bone morphogenetic protein; Runx2, runt-related transcription factor 2.

proach to managing peri-implantitis. These systems enable
the controlled and sustained release of therapeutic agents
at implant sites, optimizing treatment efficacy and reduc-
ing adverse effects. Furthermore, nanocarriers capable of
delivering small interfering RNA (siRNA) can selectively
suppress the synthesis of pro-inflammatory cytokines such
as TNF-q, IL-13, and IL-6. They can also be equipped
with chemokines or chemokine inhibitors to regulate the
migration and targeting of immune cells, providing a tar-
geted strategy for immune modulation in the treatment of
PI[223,224].

Inorganic Nanocarriers. Inorganic nanocarriers include
metal and metal oxide nanoparticles, as well as inorganic
non-metal nanoparticles synthesized through methods such
as chemical vapor deposition, physical vapor deposition,
mechanical alloying, liquid-phase chemical synthesis, and
ultrasonic irradiation. These nanoparticles are diverse in
shape, easy to synthesize, and can be easily modified. Var-
ious modification methods can enhance their controlled
release properties and targeting ability, improving drug
bioavailability [225].

Inorganic nanocarriers have gained attention in the
immunotherapy of PI. Researchers like Moses et al.
[226] have developed mesoporous Silk-Bioactive Glass
Nanocomposites. These nanocomposites are capable of
encapsulating antibiotics such as gentamicin and doxycy-
cline, facilitating their rapid release at the implant site. This
approach not only ensures the delivery of the drugs but
also preserves their bioactivity, enhancing the therapeutic
outcomes in PI treatment. Mesoporous nanocomposites’
modifiability enhances their ability to carry hydrophobic
drugs like dexamethasone, allowing for a controlled and
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sustained release. This property is particularly beneficial
in applications requiring prolonged drug action. Further-
more, dexamethasone-coated nanocomposites have been
shown to support MSCs adhesion, osteoinduction, and im-
munomodulation, which are crucial for bone repair and im-
mune regulation. In addition, bioactive glass nanocompos-
ites loaded with antibiotics such as tetracycline hydrochlo-
ride and dexamethasone have demonstrated antibacterial
effects against Sa, while also promoting the growth of
osteoblast-like cells (MG-63). This dual action makes them
promising tools in the treatment of PI and in enhancing bone
tissue integration around dental implants [227]. Irisin, rec-
ognized for its capacity to aid bone regeneration, also ex-
erts anti-inflammatory effects by influencing macrophage
differentiation. A study involving irisin-loaded bioactive
glass nanoparticles developed a nanocomposite that demon-
strated enhanced anti-inflammatory characteristics. Impor-
tantly, this material has been shown to induce osteogenic
differentiation in human periodontal ligament cells through
the p38 signaling pathway. This induction leads to higher
expression of osteogenic markers, increased ALP activity,
and improved mineralization potential compared to con-
trols. These findings suggest the potential of this composite
in facilitating bone repair and tissue restoration [228].

Polymeric Nanocarriers. Polymeric nanoparticles are de-
lightful nanoscale carriers crafted from natural polymers,
such as chitosan, or synthetic polymers like PLGA. These
nanoparticles are designed with specific compositions,
structures, and functions. They include self-assembled
polymeric nanoparticles, star-shaped polymeric nanoparti-
cles, and inorganic-polymer hybrid nanoparticles. These
carriers are highly stable and easily modified, allowing
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for drug adsorption or encapsulation for targeted delivery
[229].

Polymeric nanocarriers present a promising strategy
for the treatment of PI through targeted drug delivery sys-
tems. Research has shown that ibuprofen-loaded nanopar-
ticles made from synthetic copolymers can sustain drug
release for over seven hours in vitro [230]. Another
study demonstrated that aspirin-loaded chitosan nanopar-
ticles could successfully maintain drug release and en-
hance osteogenesis in rat cranial defects [231]. Chen et
al. [232] devised a novel therapeutic intervention for PI
by encapsulating ibuprofen and basic fibroblast growth fac-
tor within amphiphilic copolymer nanoparticles. These
nanoparticles are stable and dispersible in water, provid-
ing a controlled release of the drugs. The formulation has
demonstrated the ability to boost the proliferation and ad-
hesion of human gingival fibroblasts, as well as to increase
the expression of adhesion-related proteins such as vin-
culin. This approach supports tissue repair and possesses
anti-inflammatory properties, positioning it as a promis-
ing option for the targeted and early treatment of PI. Lima
et al. [233] immobilized antibodies on the surface of
chitosan-hyaluronic acid nanoparticles to neutralize the in-
flammatory and bone-destructive effects of IL-6. This poly-
mer showed compatibility with human macrophages and
demonstrated longer-lasting and more potent effects com-
pared to free antibodies. Additionally, polymer citraconic
anhydride grafted poly-L-lysine combined with helical pep-
tides for IL-4 and miR-21 delivery exhibited complemen-
tary functions in reducing inflammation and promoting res-
olution. This approach mitigated inflammation by inhibit-
ing NF-xB and promoted macrophage polarization to the
M2a/M2c¢ phenotype [234]. A biomimetic collagen inter-
face loaded with IL-4 promotes M2 macrophage polariza-
tion and bone regeneration in mandibular defects [235]. Ji
et al. [236] created an electrospun PLGA/gelatin nanofiber
system with a dual-drug delivery mechanism for substance
P (SP) and alendronate (ALN). This system enables timed
release of SP to promote BMSCs migration and osteogenic
differentiation, and sustained ALN release to curb bone re-
sorption. It fosters an environment that supports osteoge-
nesis and inhibits osteoclastogenesis, offering potential for
immunotherapy in PL.

Metal organic frameworks (MOFs), exemplified by
University of Oslo (UiO)-66, are versatile coordination
polymers. A UiO-66-based nanocomposite with the antimi-
crobial peptide UBI29-41 leverages photodynamic ther-
apy to target periodontal biofilms and reduce inflamma-
tion, showing promise in gingival tissue protection [237].
Zhang et al. [238] have engineered nanomembranes of
MOF-agomir capable of loading and delivering miR-27a
agomir in a sustained manner. In vitro study has shown
that L-MOF-agomir can alter the mitochondrial function
and metabolic pathways of macrophages, facilitating a shift
from the pro-inflammatory M1 to the anti-inflammatory
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M2 phenotype. This reprogramming also promotes the
osteogenic differentiation of BMSCs. When applied in a
rat model of ligature-induced PI, L-MOF-agomir demon-
strated robust immunomodulatory effects on macrophage
polarization and mitigated bone resorption caused by the
ligature. This highlights the potential of L-MOF-agomir as
a therapeutic nanomaterial for modulating the immune re-
sponse and enhancing bone health in PI.

Zeolitic imidazolate frameworks (ZIFs) are a class
of porous materials that integrate the robustness of inor-
ganic zeolites with the high porosity and organic charac-
teristics of MOFs. They consist of transition metal ions,
typically zinc or cobalt, coordinated in a tetrahedral geom-
etry with imidazole-based organic ligands, forming a crys-
talline structure. This unique combination endows ZIFs
with exceptional properties such as high thermal and chem-
ical stability, tunable porosity, and the ability to incorpo-
rate a variety of functional groups, making them versatile
for applications in catalysis, gas storage, and drug deliv-
ery, among others. Yan et al. [239] utilized ZIF-8 loaded
with cerium (Ce) to prepare Ce@ZIF-8, which corrected
mitochondrial function by catalyzing oxygen production
from hydrogen peroxide while inhibiting hypoxia-inducible
factor-1a.  Through this metabolic reprogramming path-
way, macrophages were repolarized from M1 to M2, pro-
moting soft tissue integration by regulating the fibrogen-
esis, adhesion, and contraction of gingival fibroblasts. In
another experiment, ZIF-8 loaded with hematoporphyrin
monomethyl ether, PLGA loaded with BMP-2, and met-
formin were incorporated into gelatin methacrylate hydro-
gel. This composite material demonstrated efficient ROS
production and antibacterial efficacy under ultrasound stim-
ulation, reduced the release of inflammatory factors IL-6
and TNF-«, and decreased bone loss around implants in a
rat model of bacterial-induced PI [20].

Liposome-Based Nanocarriers. Liposomes have gained
widespread application in nanodrug delivery due to their
low immunogenicity, good biocompatibility, ease of prepa-
ration, ability to encapsulate both hydrophilic and hy-
drophobic drugs, and strong targeting ability. They enter
cells via endocytosis and can be surface-modified to in-
crease targeting, effectively enhancing drug therapeutic ef-
fects [240]. A nanocomposite using liposomal carriers and
chitosan to load quercetin and ciprofloxacin demonstrated
excellent antioxidant capability and inhibition of biofilm
formation [241]. A therapeutic system featuring resver-
atrol encapsulated within liposomes has demonstrated fa-
vorable biocompatibility and the capacity to induce a phe-
notypic switch in macrophages from inflammatory M1 to
anti-inflammatory M2 by activating p-STAT3 and reduc-
ing p-STAT1 levels. This system also neutralizes ROS,
curbs NF-xB signaling and inflammasome activation, and
decreases the secretion of pro-inflammatory cytokines such
as IL-13, IL-6, and TNF-« [242]. The research of Li
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Fig. 5. Immunomodulatory strategies of PI.

et al. [243] indicated that a nano-liposome formulation
loaded with docosahexaenoic acid (DHA) can effectively
neutralize ROS, suppress NF-«<B activation, and exert anti-
inflammatory actions on macrophages. When compared
to free DHA, the DHA-loaded nanoliposomes displayed
enhanced efficacy in curbing bone resorption within a rat
model of PI. This suggests that nanoliposomal delivery sys-
tems could be instrumental in the localized and controlled
release of therapeutic agents, offering a promising avenue
for the treatment of inflammatory bone diseases. Addition-
ally, liposomes can be combined with inorganic carriers like
calcium phosphate to achieve dual loading of dexametha-
sone and its water-soluble salt dexamethasone phosphate.
This combination effectively encourages the polarization of

www.ecmjournal.org

macrophages towards the M2 phenotype while also helping
to reduce the production of pro-inflammatory cytokines. It
achieves this by inhibiting the activation and function of

NF-xB [244].

Biological-Derived Nanocarriers. Biological-derived
nanomaterials, extracted and purified from organisms,
though non-living, possess special biological functions
and good biocompatibility. With natural cell receptors
on their surface, they provide biomimetic camouflage for
drugs, avoiding rapid degradation and immune rejection.
Examples include exosomes and DNA tetrahedral nanos-
tructures. Exosomes, important mediators of intercellular
communication, carry various proteins, nucleic acids, and
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lipids, mediating tissue metabolism through paracrine
transmission, playing a crucial role in immunoregulation
and bone formation [245]. Study has shown that natural
nanoparticles exosomes isolated from dendritic cells can
inhibit the expression of bone-resorptive cytokines and re-
duce osteoclast-mediated bone loss [246]. Exosomes with
inserted Golgi glycoprotein 1 can carry Wnt-1 agonists to
reduce bone loss, promote bone formation, and accelerate
fracture healing. Fetal bovine serum exosomes loaded with
icariin can effectively promote osteoblast proliferation and
bone regeneration [247]. In another study, hybrid nanopar-
ticles produced by merging chemokine receptor (CXCR)4
exosomes with antagomir-188 carrying liposomes could
promote osteogenic differentiation of BMSCs and inhibit
adipogenesis, reducing bone loss [248].

DNA tetrahedral nanostructures are three-dimensional
DNA nanostructures with tetrahedral shapes formed by
four single strands automatically hybridizing, designed
based on the principle of base complementary pairing.
They possess good biocompatibility and excellent cell
membrane permeability [249]. Tetrahedral DNA nano-
materials modified with TLR4-siRNA can reduce the
percentage of M1 RAW264.7 macrophages by regulating
mitochondrial homeostasis of polarized macrophages,
reverse the imbalance of macrophage polarization phe-
notypes, accelerate wound healing, and inhibit bone
resorption [250]. Using DNA as a template to prepare
Sr-doped CaP nanoparticles can optimize targeted gene
transfer, regulate osteocyte functions, and play a role
in immunotherapy [251] (Fig. 4, Ref. [178,235,249];
Fig. 5) (Table 5, Ref. [20,85,152-155,158,159,161—
163,171,172,174,175,180-182,187—-189,192—-196,198—
208,226-228,232,238,241-243,246,248,250,252,253]).

Discussion

For emerging therapies, ongoing comprehensive and
critical reviews are essential for advancing PI treatment. In
this discussion, we will examine the key limitations in three
major areas: gene editing, stem cell therapy, and nanotech-
nology, while proposing potential strategies to overcome
these challenges.

Enhancing the Precision and Safety of Gene Editing.

Technologies like CRISPR/Cas9 have created new oppor-
tunities for targeted therapies against PI by altering genes
related to inflammation and bone resorption. However,
off-target effects may lead to unintended genetic modifi-
cations, potentially resulting in adverse consequences. Re-
search must focus on improving the specificity of gene edit-
ing tools to address this issue. Approaches to consider in-
clude optimizing guide RNA design, utilizing high-fidelity
Cas9 variants, and employing advanced bioinformatics al-
gorithms to predict and minimize off-target risks. Fur-
thermore, the development of innovative delivery methods
that precisely target gene editing components to tissues sur-

Cpm
CELLR maczziaLy

rounding the implantation site—such as nanoparticle-based
carriers or hydrogels—can further enhance safety and effi-
cacy. Rigorous preclinical models and long-term studies
are necessary to comprehensively understand and mitigate
the risks associated with gene editing in clinical settings.

Establishing Ethical and Regulatory Guidelines for Stem
Cell Therapy. Stem cell-based therapies hold significant
potential in the regeneration of periodontal bone and soft
tissues. However, this field faces substantial ethical and
regulatory challenges, particularly concerning the sources
and utilization of stem cells. It is crucial to develop com-
prehensive ethical guidelines that address issues such as in-
formed consent from donors and equitable access to treat-
ments. Furthermore, there should be coordination of inter-
national regulatory frameworks to promote advancements
in global stem cell research while ensuring patient safety.
To enhance moral transparency, researchers must collab-
orate with ethicists, regulatory bodies, and patient advo-
cacy organizations throughout the research and develop-
ment process. Another critical aspect is ensuring the func-
tional stability and long-term efficacy of transplanted stem
cells. This necessitates a deeper understanding of how stem
cells interact with the immune microenvironment surround-
ing implants, which can be achieved through strategies such
as developing more biocompatible scaffolds to integrate
their functions effectively.

Assessment of the Toxicity and Biocompatibility of Nano-
materials. Nanotechnology offers new solutions for tar-
geted drug delivery and enhanced bone regeneration in the
treatment of PI. However, the potential toxicity, long-term
biocompatibility, and environmental impact of nanomate-
rials cannot be overlooked. Comprehensive toxicological
evaluations using both in vitro and in vivo models are nec-
essary. Researchers should investigate how various prop-
erties of different nanomaterials—such as size, shape, and
surface charge—affect their interactions with cells and tis-
sues. Furthermore, the development of novel nanomaterials
that can safely degrade in vivo or be efficiently cleared is es-
sential to minimize potential adverse effects. Collaborative
efforts among stakeholders are required to establish stan-
dardized procedures for assessing the safety of nanomate-
rials. Additionally, regulatory agencies must provide clear
guidelines for the application of nanotechnology in clinical
settings to ensure that benefits outweigh risks.

By addressing key issues, future research can more ef-
fectively tackle the complexities of personalized treatment
for PI, paving the way for safer and more effective therapeu-
tic approaches, ultimately enhancing treatment outcomes
for each individual patient.

Future Directions

While current PI treatment methodologies have shown
some degree of effectiveness, there remains a pressing need
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Table 5. Immunomodulatory strategies of PI.

Emerging
immunomodulatory

therapies

Mechanism of action

Research progress Advantages

Limitations

Reference

Gene therapy

Gene delivery

Gene editing

Gene regulation

The introduction of
target gene into recipient
cells using gene

vectors

Utilization of CRISPR/Cas9
technology for gene
knockout, insertion, or

replacement

Utilization of miRNA
complementary to messenger
RNA for post-transcriptional

regulation of gene expression

(1) The use of adenoviral vectors to achieve knockout and overexpression

of 420 in mice has been shown to inhibit bone resorption and
. o Gene therapy can
NLRP3-mediated M1 macrophage polarization; .
. . . facilitate long-term
(2) Adenoviral vectors carrying Sema3A have demonstrated positive . .
) o ) and tissue-specific
effects on early bone integration in an in vivo rabbit model; . .
) ) ) o expression of therapeutic
(3) Overexpression of ALKBHS was achieved using lentiviral vectors, . .
. ) . ) o proteins without the
which confirmed its ability to enhance osteoblast differentiation and .
) ST need for pharmacological
reduce inflammation in diabetic mouse models; . .
o ) . intervention or
(4) Lentiviral vectors based on the autophagy protein Beclinl have also .
o surgical treatment.
been shown to reverse osteoclast apoptosis induced by elevated levels

of IL-17A.

(1) The CRISPR/Cas9 technique was employed to knock out the NF-«B
p65 gene in chondrocytes, demonstrating resistance to the pro-inflammatory
environment when co-cultured with IL-15;

(2) Successful inhibition of the expression of inflammatory cytokines TNF-«
and IL-17 in intervertebral disc cells was achieved using CRISPR/Cas9
technology.

(1) miR-27a can inhibit TNF-« in dogs, positively regulating osteogenesis
and angiogenesis, promoting new bone formation and bone integration;

(2) miR-146a can suppress RANKL-mediated bone resorption in a mouse
model by modulating TLR2/4 signaling and inhibiting the

expression of TNF-a;

(3) miR-128 promotes osteogenic differentiation of stem cells.

Considerations regarding
the immunogenicity
of the vectors,

the risk of

gene mutations

due to random
insertion, low
transfection efficiency,
and ethical safety
issues must be
addressed.

[152-155,158,159],
[161-163,252]
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Table 5. Continued.

Emerging
immunomodulatory Mechanism of action

therapies

Research progress

Advantages

Limitations Reference

Cell-based therapies

Exhibiting self-renewal and

. multi-directional
Non-odontogenic . o .
differentiation capabilities,
stem cells . o
Mesenchymal primarily mediating

stem cells immunoregulation through

cell-to-cell contact
and/or the release of

soluble factors

. Immunoregulatory
Odontogenic o
properties similar to
stem cells )
non-dental-derived stem

cells

Designing and modifying immune cells that
Immune cell . .
. ) can recognize and respond to disease states
engineering . . .
to function as “living drugs” for therapeutic

purposes

(1) Bone marrow-derived mesenchymal stem cells (BMSCs) can
significantly enhance the bone integration rates of dental implants
in both normal and diabetic rabbits;

(2) BMSCs promote the M2 differentiation of macrophages
through direct or indirect mechanisms while inhibiting the
activation of monocytes and T cells;

(3) Exosomes derived from adipose-derived mesenchymal stem
cells can also promote M2 polarization of macrophages;

(4) Peripheral blood mesenchymal stem cells not only facilitate the
M2 conversion of macrophages but also exert anti-

inflammatory properties through the Th17/Treg system;

(5) Umbilical cord mesenchymal stem cells can inhibit inflammatory
responses and modulate bone resorption in a rat PI model

(1) An in vitro study demonstrated that PDL-MSCs, DP-MSCs,
and G-MSCs can suppress the production of IFN-y and TNF-«
while increasing the expression of PD-L1, CTLA-4, IL-10, and
prostaglandin E;

(2) Gingival connective tissue-derived mesenchymal stem cells
exhibit immunoregulatory properties by upregulating IL-10 and
TGF- expression while inhibiting TNF-ov expression, thereby
displaying anti-inflammatory characteristics;

(3) In vitro experiments indicated that IL-37 can activate
autophagy in DP-MSCs, promoting their osteogenic differentiation
(1) Engineered Treg cells with inflammatory ligands can be used to
treat inflammation-driven diseases;

(2) TRAP+ macrophage lineage cells play an important role in
regulating the homeostasis and regeneration of the periosteum

by secreting transcriptionally expressed periosteum-inducing
proteins and recruiting periosteum-derived cells to the surface

of the periosteum;

(3) Macrophage-cTLR4 cells can specifically modulate inflammatory

responses and promote wound healing.

These cells demonstrate
excellent new bone
formation and integration
capabilities in the

treatment of PI

These cells are relatively

easy to obtain

These therapies exhibit

rapid responses, significant

effects, and minimal

side effects

Efficacy may be unstable, with
individual differences,

ethical considerations, and [171,172,174,175]
safety in clinical applications

needing to be addressed.

There is a certain degree of
trauma involved. Their [180-182]
proliferation and

differentiation capabilities

require further research, and

the efficiency and extent of

regeneration are currently

difficult to control precisely.

Challenges such as antigen
escape, immunosuppressive  [187—189]
microenvironments, and the

need for further research on

efficacy and safety remain.
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Table 5. Continued.

Emerging

immunomodulatory Mechanism of action

therapies

Research progress

Advantages

Limitations Reference

Nanotechnology in

immunomodulation

Implant surface

modification

TNTs

GFNs

Nha

TNTs can selectively reduce
macrophage proliferation
(immunoregulation) while
simultaneously enhancing
the activity of osteoblasts
(bone integration) and
fibroblasts (soft tissue

integration)

Exhibiting antibacterial and
immunoregulatory effects
through mechanisms such as
mechanical damage to cell
membranes, inhibition of
bacterial adhesion, oxidative
stress, and suppression of
bacterial metabolism, while
simultaneously promoting
osteoblast differentiation

and bone formation

Reducing the levels of
inflammatory factors within
tissues and decreasing

the adhesion of
Streptococcus sanguinis

around implants

(1) The diameter of TNTs promotes the formation of filopodia in
macrophages and enhances their M2 polarization by activating
the RhoA/Rho-associated protein kinase signaling pathway;

(2) TNTs with a diameter of 30 nm can spontaneously induce M2
polarization of macrophages;

(3) The use of 70 nm TNTs loaded with dexamethasone, encaps-
ulated with chitosan, demonstrates excellent osteogenic potential
when co-cultured with primary osteoblasts and macrophages

in vitro, while reducing inflammatory responses in
macrophages;

(4) Combining various nanocarriers allows for the programmed
release of multiple drugs, thereby specifically regulating
inflammation and promoting osteogenic repair.

(1) Graphene-coated titanium implants can induce the M2
polarization of macrophages, demonstrating excellent
immunomodulatory capabilities;

(2) Graphene oxide can restore or even enhance the osteogenic
potential of BMSCs surrounding the implants;

(3) Serving as a sustained-release carrier, it achieves efficient

drug delivery within tissues.

(1) Surface modifications for implants have demonstrated
excellent bone integration and reduced bone loss;

(2) There is a certain regulatory effect on T cell proliferation.

The surface morphology

can influence the behavior

Mechanical stress post-

implantation may lead
[192-196,253]

of immune cells, establishing to delamination and

a controllable drug
release system based on
a nanomedicine delivery

system.

These materials are easy
to modify on the surface
and possess a high

specific surface area

These modifications
exhibit excellent

osteogenic potential

shedding of the TNT
coating, provoking an

immune response.

Cytotoxicity and biosafety are
critical for further clinical [198-200]

applications.

Lack antibacterial
i [201-205]
properties.
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Table 5. Continued.

Emerging
immunomodulatory Mechanism of action Research progress Advantages Limitations Reference
therapies
(1) Silver nanoparticles can not only inhibit inflammatory processes
Metal ions play a crucial ~ but also promote bone healing by inducing M2 polarization These materials exhibit
Implant surface Metal . o . . . . .
. . . role in transmitting cell associated with healing; antibacterial properties,  Exhibit some cytotoxicity. [206—208]
modification nanoparticles

signals and driving directed (2) AuAg nanocomposites synthesized from two types of metal

cell differentiation within
the body, exhibiting
good immunomodulatory

properties

Nanocarriers for

targeted drug delivery
and immunomodulatory
agents
. Enhancing drug release
Inorganic .
. performance and targeting
nanocarriers

through various methods,
thereby improving drug

bioavailability

ions effectively suppress the accumulation of ROS in cells and
mitochondria while inhibiting the expression of ROS-triggered
inflammatory proteins through the MAPK and AKT pathways;
(3) The development of semi-encapsulated Gold core@CeOx2
by combining cerium oxide with gold nanorods can trigger a
potent ROS storm, disrupting pathogenic biofilms, thereby

exerting anti-inflammatory and bone-preserving effects.

(1) Mesoporous nanocomposites loaded with antibiotics

(gentamicin and doxycycline) and dexamethasone facilitate slow

and sustained drug release, promoting mesenchymal stem cell
adhesion, bone induction, and exerting immunomodulatory

effects;

(2) Bioglass nanocomposites loaded with tetracycline hydrochloride
and dexamethasone exhibit growth inhibition against Staphylococcus
aureus and promote deep proliferation of osteoblast-like cells (MG-63);
(3) Nanocomposites prepared from bioactive glass nanoparticles loaded
with irisin demonstrate enhanced anti-inflammatory properties and
stimulate osteogenic differentiation of human periodontal ligament
cells (hPDLCs).

immunoregulation,
oxidative stress induction,
and promotion of

osteogenesis

These materials feature L . .

. Their biodegradability still
diverse shapes, are easy to . [226-228]
. needs improvement.
synthesize, and are

readily modifiable
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Table 5. Continued.
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Emerging

immunomodulatory Mechanism of action

therapies

Research progress

Advantages

Limitations Reference

Polymer

nanocarriers

99

Lipid-based

nanocarriers

These carriers can
encapsulate drugs
through adsorption or

dispersion

These carriers enter cells

via endocytosis and can

(1) Amphiphilic copolymer nanoparticles loaded with ibuprofen and basic
fibroblast growth factor can provide sustained drug release and promote
the proliferation and adhesion of human gingival fibroblasts by
upregulating the expression of adhesion factors such as vinculin, exhibi-
ting anti-inflammatory properties that may offer early local treatment for
periodontitis (PI);

(2) In a ligature-induced peri-implantitis model in rats, L-MOF-agomir
implants demonstrated strong immunomodulatory activity through
macrophage polarization and alleviated ligature-induced bone resorption;
(3) ZIF-8 composites loaded with blood porphyrin methyl ether showed
good ROS production efficiency and antibacterial efficacy under
ultrasound stimulation, reducing bone loss around implants induced by
bacteria in a peri-implantitis rat model.

(1) Nanocomposites made from lipid carriers and chitosan loaded with
quercetin and ciprofloxacin exhibit excellent antioxidant capacity and the

ability to inhibit biofilm formation;

enhance targeting through (2) Therapeutic liposomal systems loaded with resveratrol can convert

surface modification,
effectively improving the
therapeutic efficacy of

drugs

inflammatory macrophages to the M2 phenotype, scavenge ROS, and
inhibit NF-xB signaling and inflammasomes, thereby reducing

the release of pro-inflammatory cytokines IL-1/3, IL-6, and

TNF-a;

(3) Nanolipid carriers loaded with DHA can scavenge ROS, inhibit NF-xB

activation, exert anti-inflammatory effects on macrophages,
and more effectively prevent bone resorption in a rat

peri-implantitis model.

These materials exhibit
high stability and ease of

surface modification

These materials have low
immunogenicity, good
biocompatibility, ease

of preparation, and the

ability to encapsulate both

hydrophilic and
hydrophobic drugs with
strong targeting

capabilities

There is a lack of sufficient
methods for in-depth [20,232,238]
evaluation of the safety,

biocompatibility, and

biodegradability of novel

polymer materials.

Additionally, the complexity

of structural design and the

tediousness of material

synthesis limit their

applications.

For certain water-soluble
drugs, the encapsulation [241-243]
efficiency may be low, and

stability can be poor.

vizaavy ?8“1=)
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Table 5. Continued.

Emerging
immunomodulatory Mechanism of action Research progress Advantages Limitations Reference

therapies

(1) Natural nanoparticle exosomes isolated from dendritic cells, when
purified and loaded with TGF-£1 and IL-10, can suppress the

. . These carriers can provide ] ) ) These materials exhibit They face challenges such as
Bio-derived L expression of bone-resorptive cytokines and reduce bone loss caused . o . .
. biomimetic camouflage good biocompatibility low intracellular delivery [85,246,248,250]
nanocarriers by osteoclasts; . .
for drugs, thereby ] ) ) . and possess natural cell efficiency and low yield.
. . . (2) Hybrid nanoparticles generated by fusing CXCR4 exosomes with lipid .
avoiding rapid degradation . . ] ) receptors on their
. L carriers loaded with antagomir-188 can promote the osteogenic
and immune rejection surfaces

differentiation of BMSCs and inhibit adipogenesis, thereby reducing bone
loss;

(3) TLR4-siRNA modified tetrahedral DNA nanomaterials can reduce the
percentage of M1 RAW264.7 macrophages by regulating mitochondrial
homeostasis in polarized macrophages, reversing the imbalance of
macrophage polarization phenotypes, and accelerating wound healing

while inhibiting bone resorption.

CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats; Cas9, CRISPR-associated protein 9; Sema3A, semaphorin 3A; ALKBHS, Alk B homologue 5; miRNA, microRNA; PDL-
MSCs, periodontal ligament mesenchymal stem cells; DP-MSCs, dental pulp stem cells; PD-L1, programmed death-1 ligand; CTLA-4, cytotoxic T-lymphocyte antigen-4; TGEF, transforming growth
factor; TRAP, tartrate-resistant acid phosphatase; TNTs, titanium dioxide nanotubes; BMSCs, bone marrow mesenchymal stem cells; MOF, metal organic framework; ZIF, zeolitic imidazolate

framework; DHA, docosahexaenoic acid; CXCR, chemokine receptor; GFNs, graphene family nanomaterials; siRNA, small interfering RNA.
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to develop more advanced and integrative strategies. The
future of PI research should focus on well-defined and inno-
vative pathways that address both the complexity of the dis-
ease and the limitations of existing treatments. Two partic-
ularly promising areas for advancement include optimizing
combination therapeutic regimens and developing precision
medicine through robust biomarker identification and im-
mune profiling.

Optimizing Combination Therapeutic Regimens. Future
PI research should focus on combining immune-boosting
therapies with mechanical cleaning and antimicrobial treat-
ments. This mix could work better together than separately,
like using a treatment that ramps up the immune system
along with cleaning out the infection to calm down inflam-
mation and make the area around the implant healthier. We
need to find the best way to give these treatments, like
when and how much, to get the most benefit and fewest
side effects. Also, we have to test new ways to give drugs
right where they’re needed, which could make the treat-
ment work better. The end game is to create treatments that
change based on how each person’s body reacts and how
bad their PI is.

Development and Application of Predictive Biomarkers.
Treating PI better in the future means using precision
medicine, which means finding biomarkers that can tell us
early if PI is starting, how well treatments will work, and
help us customize treatments for each person. Scientists
need to find markers in genes, proteins, and immune re-
sponses that can sort patients by their risk and how their
PI might progress. Things like signs of inflammation, cer-
tain immune cells, or gene differences could be good for
predicting PI and how well treatments work. These mark-
ers would help doctors keep an eye on the implant area and
change treatments as needed. Also, finding easier ways to
check these markers, maybe with saliva tests, could make
check-ups easier and help patients stick with their treatment
plans.

Harnessing Emerging Technologies. Merging cutting-
edge tech like nanomedicine and gene editing could re-
ally change how we treat P1. Nanoparticles can be tailored
to carry drugs straight to where they’re needed, curbing
side effects and boosting tissue healing. Meanwhile, gene-
editing tools like CRISPR could be used to tweak genes
linked to PI or to tweak immune responses that cause in-
flammation and bone loss. But, we need to thoroughly test
these methods in preclinical studies and carefully design
clinical trials to make sure they’re safe, accurate, and long-
lasting. Plus, we have to think about the ethics and rules
for using these new technologies to make sure they’re used
responsibly.

www.ecmjournal.org

Fostering a Systems Biology Approach. To really get PI,
we need to look at how the immune system, germs, and
gums all work together. Future studies should use fancy
computer models and Al to understand these complex inter-
actions and how treatments might affect them. This could
help us create treatments that change in real-time to fit each
person’s needs, making care more precise.

Establishing Standardized Guidelines and Frameworks.
Because PI can be different from person to person and treat-
ments are always improving, we need clear rules for how to
diagnose and treat PI. Scientists need to work together to
agree on standards for diagnosing PI, figuring out if treat-
ments work, and running tests. We also need clear rules for
new treatments like using stem cells or changing genes to
make sure they’re safe and work well in real life.

The theoretical basis of immunotherapy is to treat dis-
eases by regulating/repairing the body’s immune response.
The development of immunotherapy depends on advances
in foundational disciplines such as immunology, human mi-
crobiome genomics, and genetic engineering. Immunother-
apy is characterized by strong individuality, and future
mainstream approaches will involve analyzing patients’
genomes and immune compositions to design personalized
immunotherapy plans. The immune system is a complex
network, and disrupting its balance can cause severe side
effects. Therefore, it is crucial to detect and assess im-
mune levels in patients before immunotherapy to ensure
precision and minimize unintended side effects. Current
research in this field is still in its early stages and requires
further technological support. Furthermore, immunother-
apy must function through the body’s own immune sys-
tem, and the immune response takes time to develop. The
efficacy of immunotherapy may appear relatively slowly,
and the extent of immune system damage significantly im-
pacts its effectiveness. Combining immunotherapy with
conventional treatments for synergistic effects can enhance
treatment outcomes. Lastly, immunotherapy is an emerg-
ing technology. Standardization of different immunother-
apy products, determination of treatment courses, explo-
ration of application dosages, and establishing efficacy as-
sessment criteria are needed. The safety, ethical, and legal
issues arising from new treatment strategies such as gene
editing and stem cell therapy have sparked extensive aca-
demic discussions, making it essential to establish reason-
able norms and guidelines for the healthy development of
this field.

In conclusion, a forward-thinking, multidisciplinary
approach that integrates personalized medicine, cutting-
edge technology, and robust scientific inquiry will be key to
advancing PI treatment. By focusing on these strategic re-
search pathways, we can move toward more precise, effec-
tive, and patient-centered care, ultimately improving long-
term outcomes for those affected by peri-implantitis.
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Conclusions

This review summarizes recent advancements in im-
munomodulatory strategies for managing PI, a common
complication in oral implantology. PI progresses rapidly,
has a high incidence, and causes significant harm by con-
tinuously destroying the surrounding soft and hard tissues
of implants. Thus, its prevention and treatment are crucial
global health issues. Traditional treatments, such as me-
chanical debridement, antimicrobial therapy, and surgical
interventions, have notable limitations, particularly due to
the rise of bacterial resistance, highlighting the urgent need
for new therapeutic strategies.

Recent advancements in immunological theories and
technologies have deepened the understanding of the rela-
tionship between PI and the immune system, making im-
munotherapy a research focus. PI is a complex disease in-
volving interactions among the immune system, microor-
ganisms, and the host. There are three main immunomod-
ulatory strategies for PI:

Active immunity: Enhancing the body’s natural de-
fenses through therapeutic vaccines, probiotics, and nu-
traceuticals.

Passive immunity: Supplementing the immune sys-
tem with engineered cells or antibodies that the body cannot
produce on its own.

Immune regulation: Blocking negative regulatory fac-
tors with cells, cytokines, and micro-RNAs.

As immune technologies continue to evolve, new ap-
proaches such as nanotechnology and gene editing show
promising applications in PI immunotherapy. However,
due to individual variations in immune responses, extensive
research, particularly clinical studies, is required to ensure
the precision and minimize the unintended side effects of
these new technologies. Establishing reasonable standards
and guidelines remains a key focus for future research in
this field.
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