eCM (Eur Cell Mater / e Cells & Materials) eCM Open Access Scientific Journal
 ISSN:1473-2262         NLM:100973416 (link)         DOI:10.22203/eCM

2021   Volume No 42 – pages 20-33

Title: Dental follicle cell differentiation towards periodontal ligament-like tissue in a self-assembly three-dimensional organoid model

Authors: J Chu, O Pieles, CG Pfeifer, V Alt, C Morsczeck, D Docheva

Address: Laboratory for Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany

E-mail: denitsa.docheva at ukr.de

Abstract: Periodontitis remains an unsolved oral disease, prevalent worldwide and resulting in tooth loss due to dysfunction of the periodontal ligament (PDL), a tissue connecting the tooth root with the alveolar bone. A scaffold-free three-dimensional (3D) organoid model for in vitro tenogenesis/ligamentogeneis has already been described. As PDL tissue naturally arises from the dental follicle, the aim of this study was to investigate the ligamentogenic differentiation potential of dental follicle cells (DFCs) in vitro by employing this 3D model. Human primary DFCs were compared, in both two- and three-dimensions, to a previously published PDL- hTERT cell line. The 3D organoids were evaluated by haematoxylin and eosin, 4′,6-diamidino-2-phenylindole and F-actin staining combined with detailed histomorphometric analyses of cell-row structure, angular deviation and cell density. Furthermore, the expression of 48 tendon/ligament- and multilineage-related genes was evaluated using quantitative polymerase chain reaction, followed by immunofluorescent analyses of collagen 1 and 3. The results showed that both cell types were successful in the formation of scaffold-free 3D organoids. DFC organoids were comparable to PDL-hTERT in terms of cell density; however, DFCs exhibited superior organoid morphology, cell-row organisation (p < 0.0001) and angular deviation (p < 0.0001). Interestingly, in 2 dimensions as well as in 3D, DFCs showed significantly higher levels of several ligament- related genes compared to the PDL-hTERT cell line. In conclusion, DFCs exhibited great potential to form PDL-like 3D organoids in vitro suggesting that this strategy can be further developed for functional PDL engineering.

Key Words: Periodontitis, periodontal ligament, dental follicle cells, periodontal ligament cell line, scaffold-free approach, 3D organoids, ligamentogenic differentiation, tissue engineering.

Publication date: July 12th 2021

Article download: Pages 20-33 (PDF file)
DOI:
10.22203/eCM.v042a02

Twitter Facebook Google LinkedIn Print